
AME 301: Differential Equations, Control and
Vibrations

Introduction, Overview and Motivation

Some boring catalog stuff:

• First of a two-course sequence, the course introduces methods of

differential-equation solution together with common engineering applications

in vibration analysis and controls. Second-order, linear differential equations,

feedback control and numerical solutions to systems of ordinary differential

equations.

• The objective of this course are for students to be able to solve certain

classes of ordinary differential equations, analyze the stability of solutions of

a system of differential equations and apply techniques from the theory of

differential equations to design and analyze the stability of control systems

and engineering vibrations problems.



What are Differential Equations?

• Many physical phenomena are governed by principles which involve the

rates, i.e., derivatives, at which they change (examples to follow).

• Thus, the governing equations may involve both the value of some quantity

as well as its derivative.

• Simply put, a differential equation is an equation that contains derivatives.

• Some general examples — the underlying principles of the following fields are

described by differential equations:

– mechanics (F = ma = mẍ), (including fluid mechanics and

aerodynamics),

– thermodynamics,

– heat transfer,

– electrical circuits,

– combustion,

– nuclear reactions, etc.
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Why Study Differential Equations?

• To be able to solve problems in all the important areas listed on the previous

slide.

• To gain fundamental insight to the governing physical phenomena in those

areas.

• To develop a level of mathematical sophistication that is appropriate and

expected in the engineering profession.

• A famous quote:

The burden of the lecture is just to emphasize the fact that it is impossible

to explain honestly the beauty of the laws of nature in a way that people can

feel, without their having some deep understanding of mathematics. I am

sorry, but this seems to be the case.

Richard Feynman, The Character of Physical Law
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Some Examples:

Question: what processes on an airplane are described by differential equations?
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A few answers

Each of the following are obviously critical to the efficient and safe operation of

an aircraft:

• the basic aerodynamics,

• the relationship between control surface positions (ailerons, rudder, elevator,

etc, and the response of the aircraft,

• the dynamics of the hydraulic actuators,

• the functioning of the autopilot,

• the structural dynamics of the airplane (e.g., wing vibrations),

• the heat transfer into and out of the airplane and the pressurization of the

cabin (each in turn related to thermal expansion and contraction, which is

related to the fatigue life of the airplane),

• wheel dynamics, braking dynamics and heat transfer,

• etc.
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Consider only the engines:
Differential equations describe:

• compressible flow through

the engine,

• the thermodynamic pro-

cesses,

• the combustion process,

• heat transfer (cooling the

turbine blades currently is

a main performance limita-

tion),

• mechanical vibration,

• overall engine dynamics,

• etc.
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Other Applications

While we focused on an airplane example, differential equations also govern the

fundamental operation of important areas such as automobile dynamics,

automobile tire dynamics, automobile aerodynamics, automobile acoustics (wind,

engine, exhaust, brake and tire noise), automobile active control systems

(including speed control, engine performance and emissions control, climate

control, ABS control systems, airbag deployment systems, etc.), structural

dynamics of buildings, bridges and dams (e.g., earthquake and wind engineering),

industrial process control, control and operation of automation (robotic) systems,

HVAC systems, the operation of the electric power grid, electric power generation

(the generators as well as the process of energy creation via combustion, nuclear

reactions, solar, wind, etc.,), orbital dynamics of satellite systems, heat transfer

from electrical equipment (including computer chips), acoustics (accurate

amplification and reproduction of music), highway traffic dynamics analyses,

economic systems, biological systems, chemical systems etc, etc, etc
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Solutions to Differential Equations

• “Solving” a differential equation means determining a function that satisfies

an equation containing one or more derivatives of that function.

• Example:
dx(t)

dt
= x(t), x(0) = 1.

– t is the independent variable,

– x(t) is the solution,

– x(0) = 1 is the initial condition,

– in this case x(t) = et since it satisfies both the differential equation as

well as the initial condition.

• Alternative representations: ẋ = x, y′(x) = y(x), dξ(θ)
dθ

= ξ(θ) are all the

same equation.
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Categorization of Differential Equations

• Ordinary versus partial differential equations:

– A differential equation is ordinary (o.d.e.) if it only has one independent

variable.

– A differential equation is a partial differential equation (p.d.e.) if it has

more than one independent variable (so there are partial derivatives).

– Examples:

∗ o.d.e.: ẍ+ ẋ+ x = sin(t) (harmonic oscillation)

∗ p.d.e.: a2 ∂2y(x,t)
∂x2 = ∂2y(x,t)

∂t2
(the “wave equation” (vibrating string).

• If more than one unknown function need to be determined, then a system of

equations is needed. Example:

ḣ = ah− αhp

ṗ = −cp+ γhp.

Need two equations to determine both h(t) and p(t) (the Lotka-Volterra

predator-prey equations)
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Linear versus Nonlinear Equations

• This is a critical distinction since the former are much easier to deal with

than the latter.

• Mathematically, the ordinary differential equation

F

(

t, x,
dx

dt
,
d2x

dt2
. . . ,

dnx

dtn

)

= 0

is linear if it it is a linear function in the variables x, . . . , dnx
dtn

(note: it

doesn’t have to be linear in t).

• An equation is linear if it can be converted to the general form

anfn(t)
dnx

dtn
+ an−1fn−1(t)

dn−1x

dtn−1
+ · · ·+ a0f0(t)x = g(t),

where the ai are constants and the fi(t) and g(t) are functions of t.
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Linear versus Nonlinear

• Examples:

Linear Nonlinear

ẍ+ ẋ+ x = 0 5ẍ+ sinx = 0

5t3ẍ+ sin(t)x = 0 xẋ+ x = 0

sin(t2)ẍ+ 10x = et ẍ+ ẋ+ x3 = 0

dt
dx

+ t = x2 (1 + y2) d
2y

dx2 + x dy
dx

+ y = ex

• Simply check that the unknown function and its derivatives are only

multiplied by functions of the independent variable or constants.
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The Order of a Differential Equation

• One more definition: the order of a differential equation is the order of the

highest derivative.

• Examples:

ẍ+ ẋ+ x = 0 second order

5t3ẍ+ sin(t)x = 0 second order

sin(t2)
...
x + 10x = et third order

dt
dx

+ t = x2 first order
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Vibration Analysis

• Vibration analysis is an application of differential equations (typically

involving second order, ordinary differential equations with constant

coefficients, e.g.,

mẍ+ bẋ+ kx = sin(t).

• Earthquake and wind engi-

neering,

• vibration of machines with

rotating components (mo-

tors, jet engines, etc.)

• automotive and aircraft en-

gineering (engine vibration,

wing and structure vibration,

suspension desing, etc.).

k

b

m
f=sin(t)
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Concepts in Vibrations

• Forced response:

mẍ+ bẋ+ kx = sin t,

• unforced response:

mẍ+bẋ+kx = 0 x(0) = 1,

• resonance,

• damping,

• logrithmic decrement,

• etc.
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