UNIVERSITY OF NOTRE DAME Aerospace and Mechanical Engineering

AME 437: Control Systems Engineering Homework 1 Solutions

B. Goodwine February 17, 2003

1. From Newton's law, we know that $I\ddot{\theta}$ is equal to the sum of the moments. Therefore,

$$I\ddot{\theta} = \tau - mql\cos\theta.$$

For small θ , $\cos \theta \approx 1$. Thus

$$I\ddot{\theta} = \tau - mgl.$$

Letting I = 1 and mgl = 1, the equation of motion is

$$\ddot{\theta} = \tau - 1$$
.

Converting to two first order equations where $x_1 = \theta$ and $x_2 = \dot{\theta}$ gives

$$\frac{d}{dt} \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} x_2 \\ \tau - 1 \end{array} \right].$$

- 2. Implementing a PID controller:
 - (a) For proportional control,

$$\tau = k_p(\theta_d - \theta).$$

Using ode45() in Matlab the following is saved as pid.m:

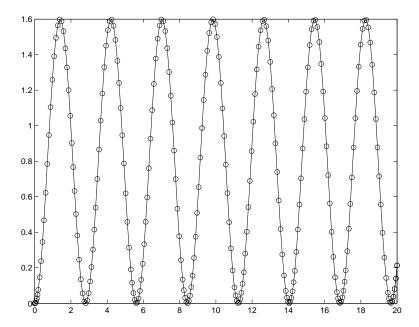


Figure 1: Response for proportional control where $k_p = 5$.

produced the result in Figure 1. Clearly the response is oscillatory and the average value is approximately $x_1 = 0.8$.

- ii. Increasing $k_p = 10$ produced the result in Figure 2. In this case the solution is still oscillatory, but the average value has increased to $x_1 = 0.9$ and the frequency has increased. Since the mean steady state value has increased from 0.8 to 0.9, the steady state error for $\theta_d = 1$ has decreased.
- (b) Adding derivative control introduces damping into the response.
 - i. Now we let $k_p = 5$ and $k_d = 0.5$. The response is illustrated in Figure 3.
 - ii. Increasing $k_d = 1$, produces the response in Figure 4, which has a reduced settling time compared to the case where $k_d = 0.5$.
 - iii. Increasing $k_d = 10$, produces the response in Figure 5, which displays no oscillatory response.
 - iv. Increasing $k_p = 10$ and keeping $k_d = 10$ produces the response in Figure 6, which has decreased steady state error.
 - v. Figure 6 also illustrates that the rise time decreases if k_p is increased.
- (c) Adding integral control eliminates the steady state error, so $\theta_d \to 1$ as $t \to \infty$..
 - i. For $k_p = 1$, $k_d = 1$ and $k_i = 0.5$, the response of the robot arm is illustrated in Figure 7. There is no steady state error.
 - ii. Increasing $k_i = 0.75$, produces the response illustrated in Figure 8, which displays increased overshoot and settling time.
 - iii. Letting $k_p = 10$, $k_d = 1$ and $k_i = 0.5$, compared to 7 for problem 2(c)i, Figure 9 illustrates that overshoot is increased from approximately 25% to approximately 50%.

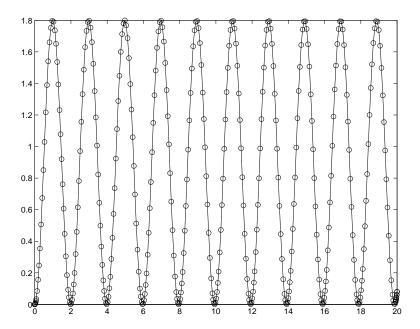


Figure 2: Response for proportional control where $k_p=10.$

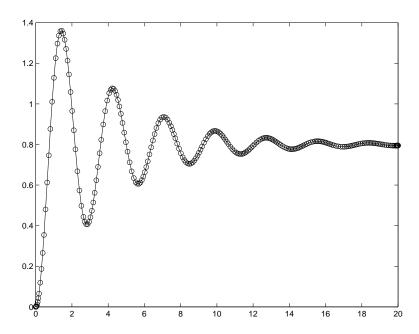


Figure 3: Response for proportional plus derivative control where $k_p=5$ and $k_d=0.5$.

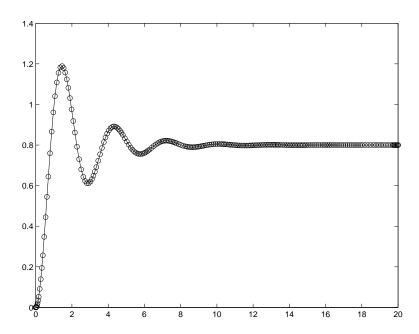


Figure 4: Response for proportional plus derivative control where $k_p=5$ and $k_d=1$.

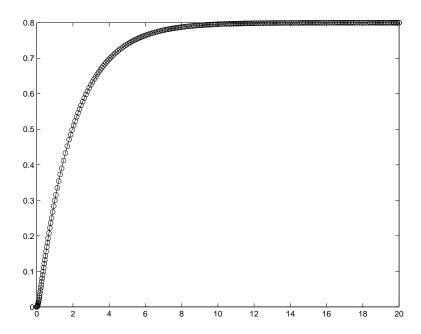


Figure 5: Response for proportional plus derivative control where $k_p=5$ and $k_d=10$.

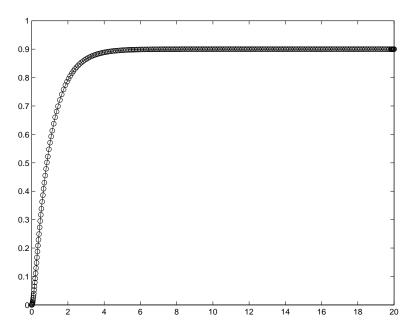


Figure 6: Response for proportional plus derivative control where $k_p=10$ and $k_d=1$.

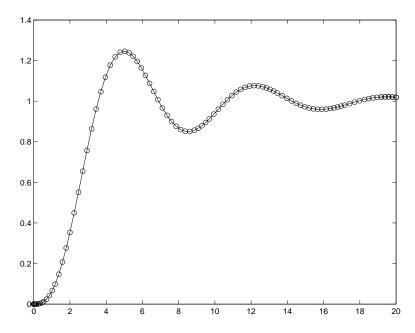


Figure 7: Response for proportional plus derivative plus integral control where $k_p = 1$, $k_d = 1$ and $k_i = 0.5$.

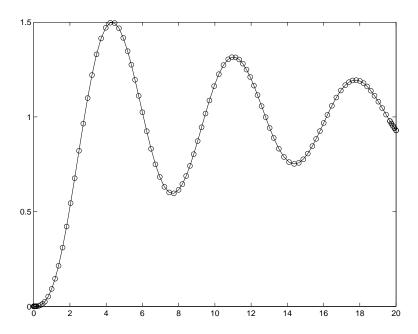


Figure 8: Response for proportional plus derivative plus integral control where $k_p = 1$, $k_d = 1$ and $k_i = 0.75$.

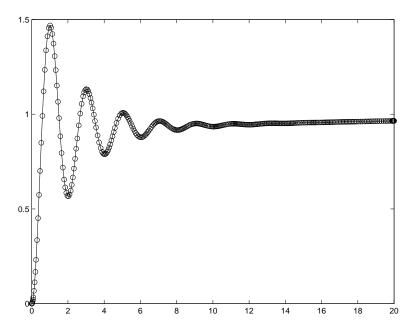


Figure 9: Response for proportional plus derivative plus integral control where $k_p = 10$, $k_d = 1$ and $k_i = 0.5$.