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1. (5.8.1:1) Plot the root locus for

K 2
GH(s) = LEED),
s(s+1)
There are poles at s = 0 and s = —1. There is a zero at s = —2.

(a) Rule 5.3.1: the locus lies on the real axis between the pole at s = 0 and the pole at
s = —1, and to the left of the zero at s = —2.

(b) Rule 5.3.4: there are two poles and one zero, so there is only one asymptote at § = 180°.
We do not need to use the asymptote angle formula for this one since, for § = 180°, it is
automatically satisfied by Rule 5.3.1.

(¢) Rule 5.3.2 and 5.3.3: we can conclude that the loci must break out between the two poles
and break into the locus to the left of the zero. There is no other way for it to start at
the poles and end at either the zero or oo.

(d) Rule 5.3.6: Since
s(s+1)
s+ 2

y

then
dK  (2s+1)(s+2)—s(s+1)

ds (s +2)?

SO % =0 = s = —0.58,—3.41 are the break out and break in points, respectively.

(e) Rule 5.3.8: we do not have to compute the departure or arrival angles. Rule 5.3.1 takes
care of this for poles and zeros on the real axis.

The root locus is illustrated in Figure 1, which can be checked with rlocus([1 2],[1 1 01)
in Matlab.

2. (5.8.1:5) Plot the root locus for

10K (s + 10)
GH(s) = ————.
() s(s +4)(s + 20)
There are poles at s = 0, —4, —20 and one zero at s = —10.
(a) Rule 5.3.1: on the real axis, the locus lies between the poles at s = 0 and s = —4 and

between the zero at s = —10 and the pole at s = —20.
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Figure 1. Root locus for 5.8.1:1.

(b) Rule 5.3.4: there are three poles and one zero, so there are two asymptotes

61 = 90°
6, = 270°

which intersect the real axis at
_ 0-4-20—-(-10)

o 5 =T
(c) There must be a break out point somewhere between s = 0 and s = —4. Since
K- s(s +4)(s + 20)
T T 10(s +10)
then
dK 3 2 :
Rl 0 = s +27s°4+240s+400=0 = s=-2.14,-12.4+5.68i,

so the break out point is at s = —2.14.

(d) There is probably no need to use Routh’s array to see if the locus crosses the imaginary
axis since it is only a third order transfer function, it will most likely be attracted to the
asymptotes after it breaks out.

The root locus is illustrated in Figure 2. Using rlocus(10*[1 10],conv([1 4 0],[1 20]))
in Matlab verifies the result.
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Figure 2. Root locus for 5.8.1:5.

3. (5.8.1:9) Plot the root locus for

K
GH(s) = .
() (s +2)(s+4)(s+10)
There are poles at s = —2, —4, —10 and no zeros.
(a) Rule 5.3.1: on the real axis, the locus lies between the poles at s = —2 and s = —4 and

to the left of the pole at s = —10.

(b) Rule 5.3.4: there are three asymptotes. Their angles are 60°, 180° and 300°, and they
intersect the real axis at

—2-4-10
7 3
(c) Rule 5.3.6:
K
(Z_s — %(S +2)(s+4)(s+10)=0 = s=-2.92,-7.74.

The first is the break out point between the poles at s = —2 and s = —4. The second is
not on the locus.

(d) You could more accurately sketch the locus by using Routh’s criterion to find the gain
for marginal stability, which can be used to exactly compute where the locus crosses the
imaginary axis.

The root locus is illustrated in Figure 3. Using rlocus(1,conv([1 6 8],[1 10])) in Matlab
verifies the result.
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Figure 3. Root locus for 5.8.1:9.

. (5.8.2:1) Sketch the root locus for

K s+ 2
= H =
G(s) o} and (s) p—
and determine the range of values for K for which the closed loop transfer function is stable.
For the root locus, notice that GH (s) has poles at s =4 and s = —1 and a zero at s = —2.

(a) Rule 5.3.1: on the real axis, the locus lies between the two poles and then to the left of
the zero.

(b) Rule 5.3.3 and 5.4.4: the locus must break out from between the two poles and then break
in to the left of the zero.

(¢) Rule 5.3.6:

1)(s —4
K:% s 2445-2-=0 = 5= .45 —4.45.

The first value of s is the break out point, and the second is the break in point.

The root locus is illustrated in Figure 3. Using rlocus(1,conv([1 6 8],[1 10])) in Matlab
verifies the result.

To determine the range of K values for stability, we use Routh’s criterion on the characteristic
polynomial for the overall transfer function.

X

s+1
Rs) 14855
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Figure 4. Root locus for 5.8.2:1.

so the characteristic polynomial is s + (K — 3)s + (2K — 4).
s2 1 2K —4

LV K-3
012K -4
From the second row, K > 3.
. (5.8.3:1) Plot the root locus for
K(s+2
GHG) = oz ¢ 1§(s ¥ ;0)(5 +30)°
There are four poles at s = —1 £4,—20,—30 and a zero at s = —2.
(a) Rule 5.3.1: on the real axis, the locus lies between the zero at s = —2 and the pole at

s = —20, and to the left of the pole at s = —30.

(b) Since there are four poles and one zero, there are three asymptotes. The angles are
60°, 180° and 300°, and they intersect the real axis at

 —1-1-20-30—(-2)

= —16.66.
3

g

(¢) Rule 5.3.8: The locus departs the complex conjugate pole with positive imaginary part
at an angle determined by the 180° rule:

Y — X ¢ = 180,



where the 1); are the angles from the zeros to the s value and the ¢; are the angles from
the poles. Note, ¢y = 45°, ¢1 = 90°, ¢» = tan~' 5 = 3.01° and ¢3 = tan~' 55 = 1.97°.
Thus

45 — 90 — Pgep — 3.01 — 1.97 = 180,

SO
d)dep = 130°.

Rule 5.3.6: if there are no break in or break out points, then the branches leaving the
complex conjugate pair of poles simply tend toward the asymptotes and go to oo. If there
are break in and break out points, then the one to the right will be a break in point from
the complex conjugate poles and the one to the left will be a break out point for the
asymptotes.

Since
K- (82 + 25+ 2)(s + 20)(S + 30)
N s+2 ’

boring math gives

dK 4 3 2

Fk 0 = 3s" +112s° + 1014s* + 2808s + 1400 = 0.
Thus,

s = —25.4826, —7.2057, —4.0115, —0.6335.

The middle two lie on the locus on the real axis. s = —4.01 must be a break in point,
and s = —7.21 must be a break out point.

The root locus is illustrated in Figure 5, and Figure 6 shows a close-up of the locus near the
complex conjugate pairs of poles of GH(s).

. (5.8.6:1) All the root locus plotting rules, including rule 1, are based upon ZGH(s) = 180°.
For a given s-value, /GH(s) is the sum of the angles from all the zeros of GH(s) minus the
sum of the angles from all the poles of GH(s). On the real axis, however, the contribution to
/GH(s) from each member of a complex conjugate pair or poles or zeros will exactly cancel

each

other since they must occur in complex conjugate pairs.

. The following code numerically solves the Lorenz equations using the fourth order Runge-Kutta
method. A plot of the solution is in Figure 7.

#include<stdio.h>
#include<math.h>

main

0O A

double *x,dt,tfinal,t;

double k1,k2,k3,k4,11,12,13,14,ml1,m2,m3,m4;
double sig, beta, rho;

FILE x*fp;

x = (double *)malloc(3*sizeof (double));

fp

= fopen("rk.d","w");
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Figure 5. Root locus for 5.8.3:1.

Root Locus

0

1 1 1 1 1

-8 -6 -4 -2 0
Real Axis

Figure 6. Root locus for 5.8.3:1.




tfinal = 50.0;
dt = 0.001;

sig = 10.0;
beta = 8.0/3.0;
rho = 28.0;
x[0] = 0.0;
x[1] = 0.05;
x[2] = 0.05;

for(t=0;t<=tfinal;t+=dt) {

k1l =
11 =
ml =

k2 =
12 =
m2 =

k3 =
13 =
m3 =

k4 =
14 =
m4 =

x[0]
x[1]
x[2]

dt*(sig*(x[1] - x[01));
dt*(rho*x[0] - x[1] - x[0]1*x[2]);
dt*(-beta*x[2] + x[0]*x[1]);

dt*(sigx((x[11+11/2) - (x[0]1+k1/2)));
dt*(rhox (x[0]+k1/2) - (x[1]+11/2) - (x[0]+k1/2)*(x[2]+m1/2));
dt*(-betax(x[2]+m1/2) + (x[0]+k1/2)*(x[1]+11/2));

dt*(sigx((x[1]1+12/2) - (x[0]1+k2/2)));
dt*(rhox(x[0]+k2/2) - (x[11+12/2) - (x[0]+k2/2)*(x[2]+m2/2));
dt*(-betax(x[2]+m2/2) + (x[0]+k2/2)*(x[1]+12/2));

dt*(sig*x((x[11+13) - (x[0]1+k3)));
dt*(rhox(x[0]+k3) - (x[1]+13) - (x[0]+k3)*(x[2]+m3));
dt*(-beta*x(x[2]+m3) + (x[0]+k3)*(x[1]+13));

+= (k1+k2*2+k3*2+k4)/6.0;
+= (11+12%2+13%2+14)/6.0;
+= (m1+m2*2+m3*2+m4) /6.0;

fprintf (fp, "%E\t%f\t%f\t%f\n" ,t,x[0],x[1],x[2]);

}

fclose(fp);

}

8. From http://userwww.sfsu.edu/ rsauzier/LorenzE.html:

Lorenz, Edward N(orton) (1917-)

Meteorologist, born in West Hartford, CT. Working at the Massachusetts Institute of
Technology from 1946, he was the first to describe what is known as ”deterministic
chaos” as a shaper of weather, and was the originator of the term ”the butterfly
effect”- the flapping wings of a butterfly in China could alter the weather over
America a few days later. Among other major meteorology awards, he received the

1991 Kyoto Prize.
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Figure 7. Solution to the Lorenz equations.

From http://mathforum.org/library/drmath/view/61791.html:

The Lorenz equations are actually a system of nonlinear differential equations. The
significance of these equations, which were discovered by Edward Lorenz back in
the 60s, is that relatively simple systems such as these could exhibit rather complex
(specifically, chaotic) behavior. The chaotic aspect of this system demonstrates that,
despite being given the initial conditions to any arbitrary degree of accuracy, one
cannot predict a sufficiently advanced state of the system. In other words, the system
has built into itself the property of amplifying small perturbations until they become
so significant they affect the accuracy of the results.

Lorenz, a meteorologist, made his discovery by observing weather phenomena - in
particular, convection of fluids (and to a weatherman, the ”fluid” he’s most interested
in is air). He took various mathematical models of fluid convection and simplified
them into a system of differential equations that basically led him to the now-famous
Lorenz equations.



