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1. Hopefully, every group accomplished at least some work this week on project 2.

2. (a) You can do this problem in two ways. The first way is attaching frames to each link and
determining the Denavit–Hartenberg parameters, as illustrated in Figure 1.
Referring to the figure, the link parameters are:

i αi−1 ai−1 di θi
1 0 0 0 θ1

2 0 l1 0 θ2

3 0 l2 0 θ3

Using equation 3.6 or your Mathematica function, gives the transformation

0
3T =


cos(θ1 + θ2 + θ3) − sin(θ1 + θ2 + θ3) 0 cos(θ1) l1 + cos(θ1 + θ2) l2
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) 0 sin(θ1) l1 + sin(θ1 + θ2) l2

0 0 1 0
0 0 0 1


Note that frame 0 is the same as frame S; however, the tool frame T is not frame 3. To get
the overall transformation S

TT , we need to multiply 0
3T by 3

TT , which is pure displacement
in the x–direction:

3
TT =


1 0 0 l3
0 1 0 0
0 0 1 l3
0 0 0 1

 .
Evaluating the matrix product gives

S
TT =

 cos(θ1 + θ2 + θ3) − sin(θ1 + θ2 + θ3) 0 cos(θ1) l1 + cos(θ1 + θ2) l2 + cos(θ1 + θ2 + θ3) l3
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) 0 sin(θ1) l1 + sin(θ1 + θ2) l2 + sin(θ1 + θ2 + θ3) l3

0 0 1 0
0 0 0 1

 .
(1)

The (x, y) displacement of the end effector (the origin of the tool frame) is given by the
upper two terms of the last column, and inspecting the rotation matrix component of T
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Figure 1. Mechanism for Problem 2.
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(the upper left 3× 3 part, shows that the orientation is a pure rotation about the z–axis
by an amount θ1 + θ2 + θ3. Clearly, this is what should be expected, since it is a planar
problem, which restricts rotation to be purely about the z–axis.
The easier way to do the problem is to take the (x, y) forward kinematics that I gave in
class, and realize that the rotational part must be θ1 + θ2 + θ3 about the z–axis.

(b) Since this is a planar problem, we will restrict our attention to the (x, y) displacement
variables, and rotation about the z–axis only. Looking at the forward kinematics, Equa-
tion 1, we see that

x = l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)
y = l1 sin θ1 + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)

and the amount of rotation about the z axis is θ1 + θ2 + θ3.
Differentiating gives

ẋ = −l1θ̇1 sin θ1 − l2(θ̇1 + θ̇2) sin(θ1 + θ2)− l3(θ̇1 + θ̇2 + θ̇3) sin(θ1 + θ2 + θ3)
ẏ = l1θ̇1 cos θ1 + l2(θ̇1 + θ̇2) cos(θ1 + θ2) + l3(θ̇1 + θ̇2 + θ̇3) cos(θ1 + θ2 + θ3)
ωz = θ̇1 + θ̇2 + θ̇3

Writing this as a matrix product gives: ẋ
ẏ
ωz

 = J

 θ̇1

θ̇2

θ̇3

 ,
Where

J =

[ −l1 sin θ1 − l2 sin(θ1 + θ2)− l3 sin(θ1 + θ2 + θ3) −l2 sin(θ1 + θ2)− l3 sin(θ1 + θ2 + θ3) −l3 sin(θ1 + θ2 + θ3)
l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3) l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3) l3 cos(θ1 + θ2 + θ3)

1 1 1

]
.

(c) Since the Jacobian is 4×4, we can use the determinant to determine where it drops rank.
A hand, or Mathematica computation shows that

detJ = l1l2 sin θ2,

so the manipulator is singular whenever

θ2 = kπ, k = 1, 2, , . . . .

(d) The Mathematica code to implement the animation can be found on the course web page:
http://controls.ame.nd.edu/me469/hw4-1d.ps

3. From the previous problem we know that the mechanism is singular whenever θ2 = kπ. Let’s
pick θ2 = 0, and arbitrarily pick θ1 = 0 and θ3 = π

2 .
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Substituting these values into the Jacobian gives:

J =

 −l3 −l3 −l3
l1 + l2 l2 0

1 1 1

 .
Let

Fe =

 −1000000
0

l31000000

 .
(This came from drawing a free–body diagram for the last link, and determining what applied
torque would be required so that there would be no toque at joint 3).

Then, the joint torques are

τ =

 τ1
τ2
τ3

 =

 −l3 −l3 −l3
l1 + l2 l2 0

1 1 1

T  −1000000
0

−l31000000

 =

 0
0
0


i.e., no joint torques are required to maintain this applied force and moment — Fe lies in the
null space of JT .

Perhaps a more intuitive case would be to take θ1 = θ2 = θ3 = 0, and let Fe be a force in the
x–direction. The same result would occur, i.e., no joint torques required to resist this applied
force.

4. (a) Figure 2 shows the manipulator with the link frame assignments determined in Homework
2, with a tool frame added at the end effector. The relationship between the tool frame
and frame 3 is a pure displacement in the x direction, i.e.,

T
3 T =


1 0 0 a3

0 1 0 0
0 0 1 0
0 0 0 1

 .
Multiplying 3

0T from Homework 2 and this gives

T
0 T =3

0 T
T
3 T =

− (cos(θ1) sin(θ2 + θ3)) − (cos(θ1) cos(θ2 + θ3)) sin(θ1) − (cos(θ1) (sin(θ2) a2 + sin(θ2 + θ3) a3))
− (sin(θ1) sin(θ2 + θ3)) − (cos(θ2 + θ3) sin(θ1)) − cos(θ1) − (sin(θ1) (sin(θ2) a2 + sin(θ2 + θ3) a3))

cos(θ2 + θ3) − sin(θ2 + θ3) 0 cos(θ2)a2 + cos(θ2 + θ3) a3

0 0 0 1


(Recall that the direction for the x axis for frame 3 is arbitrary. Therefore, you could have
correctly put the x3 axis in a different orientation. In such a case, the above reasoning
would be the same, but the pure displacement would not necessarily be in the x direction.)
Since we are only concerned with the (x, y, z) location of the end effector, the Jacobian
can be determined by differentiating the displacement term of T0 T , (the top three terms
of the last column). Let’s denote this vector by

p =

 px
py
pz

 .
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Figure 2. Frames for Problem 4.
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Then the Jacobian is

J =

[ ∂px
θ1

∂px
θ2

∂px
θ3

∂py
θ1

∂py
θ2

∂py
θ2

∂pz
θ1

∂pz
θ2

∂pz
θ3

]
=

[
sin(θ1) (sin(θ2) a2 + sin(θ2 + θ3) a3) − (cos(θ1) (cos(θ2)a2 + cos(θ2 + θ3)a3)) − (cos(θ1) cos(θ2 + θ3) a3)
− (cos(θ1) (sin(θ2) a2 + sin(θ2 + θ3) a3)) − (sin(θ1) (cos(θ2) a2 + cos(θ2 + θ3)a3)) − (cos(θ2 + θ3) sin(θ1) a3)

0 − (sin(θ2)a2)− sin(θ2 + θ3) a3 − (sin(θ2 + θ3) a3)

]
.

(b) A quick mental calculation shows that

det(J) = sin(θ3) a2 a3 (sin(θ2) a2 + sin(θ2 + θ3) a3) .

Therefore, the mechanism is singular if θ3 = 0.

(c) If each joint angle is 30◦, then substituting these values for each joint angle, we get

τ = JTFe =

 −4.57532 a2− 7.92468 a3

−42.0753 a2− 38.726 a3

−38.726 a3.

 .
Assigning numerical values for a2 and a3 was acceptable as well.

5. (a) Figure 3 shows the manipulator with the link frame assignments determined in Homework
2, with a tool frame added at the end effector. For simplicity, assume that the final joint
is “straight,” , i.e., it is aligned with the frames so that the relationship between the tool
frame and frame 3 is a pure displacement in the x direction, i.e.,

T
3 T =


1 0 0 a3

0 1 0 0
0 0 1 0
0 0 0 1

 .
Multiplying 3

0T from Homework 2 and this gives

T
0 T =3

0 T
T
3 T =

 cos(θ2 + θ3) − sin(θ2 + θ3) 0 a1 + cos(θ2) a2 + cos(θ2 + θ3) a3

sin(θ2 + θ3) cos(θ2 + θ3) 0 sin(θ2) a2 + sin(θ2 + θ3) a3

0 0 1 d1

0 0 0 1


(Recall that the direction for the x axis for frame 3 is arbitrary. Therefore, you could have
correctly put the x3 axis in a different orientation. In such a case, the above reasoning
would be the same, but the pure displacement would not necessarily be in the x direction.)
Since we are only concerned with the (x, y, z) location of the end effector, the Jacobian
can be determined by differentiating the displacement term of T0 T , (the top three terms
of the last column). Let’s denote this vector by

p =

 px
py
pz

 .
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Figure 3. Frames for Problem 5.
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Then the Jacobian is

J =

[ ∂px
d1

∂px
θ2

∂px
θ3

∂py
d1

∂py
θ2

∂py
θ2

∂pz
d1

∂pz
θ2

∂pz
θ3

]
=

[
0 − (sin(θ2) a2)− sin(θ2 + θ3) a3 − (sin(θ2 + θ3)a3)
0 cos(θ2) a2 + cos(θ2 + θ3)a3 cos(θ2 + θ3) a3
0 0 0

]
.

(b) A quick mental calculation shows that

det(J) = a2a2 sin θ3.

Therefore, the mechanism is singular if θ3 = 0.

(c) If each joint angle is 30◦, then substituting these values for each joint angle, we get

τ = JTFe =

 25.
9.15064 a2. − 9.15064 a3.

−9.15064 a3.

 .
Assigning numerical values for a2 and a3 was acceptable as well. Note that the answer is
independent of d1.

6. (a) Figure 4 shows the manipulator with the link frame assignments determined in Homework
3, with a tool frame added at the end effector. The relationship between the tool frame
and frame 3 is a pure displacement in the −y direction, i.e.,

T
3 T =


1 0 0 0
0 1 0 −a
0 0 1 0
0 0 0 1

 .
Multiplying 3

0T from Homework 3 and this gives

T
0 T =3

0 T
T
3 T =

 0 0 1 d3

0 −1 0 d2

1 0 0 a+ d1

0 0 0 1


(Recall that the direction for the x axis for frame 3 is arbitrary. Therefore, you could have
correctly put the x3 axis in a different orientation. In such a case, the above reasoning
would be the same, but the pure displacement would not necessarily be in the x direction.)
Since we are only concerned with the (x, y, z) location of the end effector, the Jacobian
can be determined by differentiating the displacement term of T0 T , (the top three terms
of the last column). Let’s denote this vector by

p =

 px
py
pz

 .
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Then the Jacobian is

J =


∂px
d1

∂px
d2

∂px
d3

∂py
d1

∂py
d2

∂py
d2

∂pz
d1

∂pz
d2

∂pz
d3



=


0 0 1 d3

0 −1 0 d2

1 0 0 a+ d1

0 0 0 1

 .
This matrix is never singular, and so the mechanism has no singularities.
This should be clear to you by inspcetion; however, if it is not clear to you, compute the
determinant and you will see that it is never zero, regardless of the values of the di.

7. We computed the Jacobian for the SCARA robot in class. The Mathematica we generated is
available on the course web page: http://controls.ame.nd.edu/me469/scara.nb.ps

From that, we have

V =


−
(
θ̇1 sin(θ1) l1

)
−
(
θ̇1 + θ̇2

)
sin(θ1 + θ2) l2

θ̇1 cos(θ1) l1 +
(
θ̇1 + θ̇2

)
cos(θ1 + θ2) l2

ḋ4

−θ̇1 − θ̇2 − θ̇3

 .

“Factoring out” the joint velocity terms gives:

V =


− (sin(θ1) l1)− sin(θ1 + θ2) l2 − (sin(θ1 + θ2) l2) 0 0

cos(θ1) l1 + cos(θ1 + θ2) l2 cos(θ1 + θ2) l2 0 0
0 0 0 1
−1 −1 −1 0



θ̇1

θ̇2

θ̇3

ḋ4

 ,
so

J =


− (sin(θ1) l1)− sin(θ1 + θ2) l2 − (sin(θ1 + θ2) l2) 0 0

cos(θ1) l1 + cos(θ1 + θ2) l2 cos(θ1 + θ2) l2 0 0
0 0 0 1
−1 −1 −1 0

 .
Substituting θ1 = θ2 = θ3 = 30◦ and d4 = 0, and also l1 = l2 = 1 gives

J =


−1.36603 −0.866025 0 0
1.36603 0.5 0 0

0 0 0 1
−1 −1 −1 0

 .
Mathematica’s Eigensystem[J . Transpose[J]] gives
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{{6.86611,1.,0.821624,0.0443155},
{{0.600767,-0.526938,0.,0.601178},
{0.,0.,1.,0.},
{0.375466,-0.477923,0.,-0.794113},
{0.705765,0.702799,0.,-0.0892733}}}

where the first element of the list contains the four Eigenvalues. The Eigenvector corresponding
to the smallest Eigenvalue is the last one. Therefore, the direction of maximum mechanical
advantage is in the direction of the last Eigenvector.

The direction of maximum velocity amplitude is in the direction of the Eigenvector corre-
sponding to the largest Eigenvalue. Therefore, the direction of maximum velocity amplitude
is in the direction of the first Eigenvector.
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