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1. (Craig, 3.11)
Following the usual rules for affixing frames to manipulators results in the frames illustrated

in Figure 1.

Consulting the figure, the following link parameters are apparent:

i αi−1 ai−1 di θi
4 0 0 0 θ4

5 φ 0 0 θ5

6 −φ 0 0 θ6

Determining B
4 T ,45T and 5

6T is now a simple matter of substituting these values into Equation
3.6, or, even simpler, using the Mathematica function from the previous homework.

<</home/bill/courses/me469/math/forward.m
T[0,0,0,t4] . T[phi,0,0,t5] . T[-phi,0,0,t6] //Simplify

produces the mess

{-(Sin[t4]*(Cos[phi]*Cos[t6]*Sin[t5] +
Cos[phi]^2*Cos[t5]*Sin[t6] + Sin[phi]^2*Sin[t6])) +

Cos[t4]*(Cos[t5]*Cos[t6] - Cos[phi]*Sin[t5]*Sin[t6]),
-(Cos[phi]^2*Cos[t5]*Cos[t6]*Sin[t4]) -
Cos[t6]*Sin[phi]^2*Sin[t4] -
Cos[phi]*Cos[t4 + t6]*Sin[t5] - Cos[t4]*Cos[t5]*Sin[t6],

-(Sin[phi]*(Cos[phi]*(-1 + Cos[t5])*Sin[t4] +
Cos[t4]*Sin[t5])), 0},

{Cos[phi]*Cos[t4 + t6]*Sin[t5] +
Cos[t4]*Sin[phi]^2*Sin[t6] +
Cos[t5]*(Cos[t6]*Sin[t4] + Cos[phi]^2*Cos[t4]*Sin[t6]),

Cos[phi]^2*Cos[t4]*Cos[t5]*Cos[t6] +
Cos[t4]*Cos[t6]*Sin[phi]^2 - Cos[t5]*Sin[t4]*Sin[t6] -
Cos[phi]*Sin[t5]*Sin[t4 + t6],
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Figure 1. Frames for problem 1.
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Sin[phi]*(Cos[phi]*Cos[t4]*(-1 + Cos[t5]) -
Sin[t4]*Sin[t5]), 0},

{Sin[phi]*(Cos[t6]*Sin[t5] +
Cos[phi]*(-1 + Cos[t5])*Sin[t6]),

Sin[phi]*(Cos[phi]*(-1 + Cos[t5])*Cos[t6] -
Sin[t5]*Sin[t6]), Cos[phi]^2 + Cos[t5]*Sin[phi]^2, 0},

{0, 0, 0, 1}}

To check to make sure it makes sense, take all the joint angles, θ4, θ5 and θ6 to be zero:

<</home/bill/courses/me469/math/forward.m
T[0,0,0,0] . T[phi,0,0,0] . T[-phi,0,0,0] //Simplify //MatrixForm

which gives the expected answer

B
6 T =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
If θ4 = π and the other joints are zero, then

<</home/bill/courses/me469/math/forward.m
T[0,0,0,Pi] . T[phi,0,0,0] . T[-phi,0,0,0] //Simplify //MatrixForm

B
6 T =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,
which also is expected because rotating joint 4 by π will rotate the x and y components of a
vector by 180◦, which will make their components negative of what they start as.

2. (Craig, 3.16)

The link frame assignments are illustrated in Figure 2 (any axis not shown is determined by
the right hand rule).

Consulting the figure, and naming the distances a1 and a2, the following link parameters are
apparent:

i αi−1 ai−1 di θi
1 0 0 0 θ1

2 π
2 a1 d2 0

3 −π2 0 0 θ3
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Figure 2. Link frame assignments for problem 2.
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Figure 3. Link frame assignments for problem 3.

Note that I took the the reference value for θ3 to be the position of the wrist when it is “straight
out,” and the reference value for d2 to be zero when the frame 3 is located a distance of a2

away from frame 2.

Plugging into Equation 3.6, or the Mathematica function gives the forward kinematics

0
3T =


cos(θ1 + θ3) − sin(θ1 + θ3) 0 a1 cos θ1 + d2 sin θ1

sin(θ1 + θ3) cos(θ1 + θ3) 0 −d2 cos θ1 + a1 sin θ1

0 0 1 0
0 0 0 1


3. (Craig, 3.21)

Note that I picked joint axis 1 in the middle of the mechanism. You could have picked the
joint axis to be any line parallel to the two rails that define axis 1.

The link frame assignments are illustrated in Figure 3.

Consulting the figure, the following link parameters are apparent:
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i αi−1 ai−1 di θi
1 0 0 d1 0
2 −π2 0 d2 −π2
3 −π2 0 d3 0

Plugging into Equation 3.6, or the Mathematica function gives the forward kinematics

0
3T =


0 0 1 d3

0 −1 0 d2

1 0 0 d1

0 0 0 1


4. This problem was to compute the inverse kinematics of the manipulator illustrated in Craig,

Figure 3.29. To compute the forward kinematics, you could have either assigned frames and
then computed the location of the tip of the manipulator in the zero frame (like problem 3.9),
or, in this case the manipulator is simple enough that it is possible to simply compute the tip
location based on geometry.

Either method gives x
y
z

 =

 cos θ1 (L1 + L2 cos θ2 + L3 cos(θ2 + θ3))
sin θ1 (L1 + L2 cos θ2 + L3 cos(θ2 + θ3))

L2 sin θ2 + L3 sin(θ2 + θ3)

 .
This assumes that the reference frame is as illustrated in Figure 4.

If we let L1 = 1, L2 = 1 and L3 = 0.5, and testing it on a solution that is obvious (where
(x, y, z) = (2, 0, 0.5)), using the Mathematica FindRoot[] function gives

l1 = 1;
l2 = 1;
l3 = 0.5;
x = 2;
y = 0;
z = 0.5;
FindRoot[{x == Cos[t1] (l1 + l2 Cos[t2] + l3 Cos[t2 + t3]),

y == Sin[t1] (l1 + l2 Cos[t2] + l3 Cos[t2 + t3]),
z == l2 Sin[t2] + l3 Sin[t2 + t3]}, {t1, 0.1},{t2, 0.1},{t3, 1.5}]

gives {t1 → 1.18241 10−11, t2 → −1.114 10−11, t3 → 1.5708} which is clearly correct.

Checking with another desired point, (x, y, z) = (0.8,−0.776, 1.1) which returns

l1 = 1;
l2 = 1;
l3 = 0.5;
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Figure 4. Figure for Problem 4.
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x = 0.8;
y = -0.776;
z = 1.1;
FindRoot[{x == Cos[t1] (l1 + l2 Cos[t2] + l3 Cos[t2 + t3]),

y == Sin[t1] (l1 + l2 Cos[t2] + l3 Cos[t2 + t3]),
z == l2 Sin[t2] + l3 Sin[t2 + t3]}, {t1, 0.1},{t2, 0.1},{t3, 1.5}]

which returns {t1 → −0.770171, t2 → 0.998116, t3 → 1.59768}.
Finally, if we try to specify a point that is not reachable, Mathematica complains:

l1 = 1;
l2 = 1;
l3 = 0.5;
x = 1.5;
y = -1.5;
z = 1.1;
FindRoot[{x == Cos[t1] (l1 + l2 Cos[t2] + l3 Cos[t2 + t3]),

y == Sin[t1] (l1 + l2 Cos[t2] + l3 Cos[t2 + t3]),
z == l2 Sin[t2] + l3 Sin[t2 + t3]}, {t1, 0.1},{t2, 0.1},{t3, 1.5}]

FindRoot::"cvnwt":
"Newton’s method failed to converge to the prescribed accuracy after

15 iterations."

Even increasing the number of iterations to 100 does not help:

l1 = 1;
l2 = 1;
l3 = 1.5;
x = -1.5;
y = -0.776;
z = 1.1;
FindRoot[{x == Cos[t1] (l1 + l2 Cos[t2] + l3 Cos[t2 + t3]),

y == Sin[t1] (l1 + l2 Cos[t2] + l3 Cos[t2 + t3]),
z == l2 Sin[t2] + l3 Sin[t2 + t3]}, {t1, 0.1},{t2, 0.1},{t3, 1.5},

MaxIterations->100]

FindRoot::"cvnwt":
"Newton’s method failed to converge to the prescribed accuracy after \

100 iterations."
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