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1. The first problem was a quick summary of the proposed research for project 2.

2. I wrote a mathematica notebook to solve this. It is available on the course web page:
http://controls.ame.nd.edu/me469/pieper.nb. If you run it, it should give all four pos-
sible solutions. Depending upon which value you used for a3 you may have to change some
variable values near the top of the notebook.

3. (Craig, 5.18)
This is just asking for the linear part, so all we have to do is differentiate the top three terms
of the fourth column:

0P3ORG =

 l1c1 + l2c1c2
l1s1 + l2s1c2

l2s2

 ,
therefore

0Ṗ3ORG =

 −θ̇1(l1s1 + l2s1c2)− θ̇2l2c1s2

θ̇1(l1c1 + l2c1c2)− θ̇2l2s1s2

θ̇2l2c2

 ,
or, in matrix form,

0J(Θ) =

 −l1s1 − l2s1c2 −l2c1s2 0
l1c1 + l2c1c2 −l2s1s2 0

0 l2c2 0

 .

4. (Craig, 5.19)
Using the general definition of a Jacobian directly gives:

J(Θ) =
[
−a1s1 − d2c1 −s1

a1c1 − d2s1 c1

]
.

Now,
det (J(Θ)) = −d2.
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Therefore, the manipulator is at a singular configuration when

d2 = 0.

5. (a) You can do this problem in two ways. The first way is attaching frames to each link and
determining the Denavit–Hartenberg parameters, as illustrated in Figure 1.
Referring to the figure, the link parameters are:

i αi−1 ai−1 di θi
1 0 0 0 θ1

2 0 l1 0 θ2

3 0 l2 0 θ3

Using equation 3.6 or your Mathematica function, gives the transformation

0
3T =


cos(θ1 + θ2 + θ3) − sin(θ1 + θ2 + θ3) 0 cos(θ1) l1 + cos(θ1 + θ2) l2
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) 0 sin(θ1) l1 + sin(θ1 + θ2) l2

0 0 1 0
0 0 0 1


Note that frame 0 is the same as frame S; however, the tool frame T is not frame 3. To get
the overall transformation S

TT , we need to multiply 0
3T by 3

TT , which is pure displacement
in the x–direction:

3
TT =


1 0 0 l3
0 1 0 0
0 0 1 0
0 0 0 1

 .
Evaluating the matrix product gives

S
TT =

 cos(θ1 + θ2 + θ3) − sin(θ1 + θ2 + θ3) 0 cos(θ1) l1 + cos(θ1 + θ2) l2 + cos(θ1 + θ2 + θ3) l3
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) 0 sin(θ1) l1 + sin(θ1 + θ2) l2 + sin(θ1 + θ2 + θ3) l3

0 0 1 0
0 0 0 1

 .
(1)

The (x, y) displacement of the end effector (the origin of the tool frame) is given by the
upper two terms of the last column, and inspecting the rotation matrix component of T
(the upper left 3× 3 part, shows that the orientation is a pure rotation about the z–axis
by an amount θ1 + θ2 + θ3. Clearly, this is what should be expected, since it is a planar
problem, which restricts rotation to be purely about the z–axis.
The easier way to do the problem is to take the (x, y) forward kinematics that I gave in
class, and realize that the rotational part must be θ1 + θ2 + θ3 about the z–axis.

(b) Since this is a planar problem, we will restrict our attention to the (x, y) displacement
variables, and rotation about the z–axis only. Looking at the forward kinematics, Equa-
tion 1, we see that

x = l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)
y = l1 sin θ1 + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)
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Figure 1. Mechanism for Problem 5.
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and the amount of rotation about the z axis is θ1 + θ2 + θ3.
Differentiating gives

ẋ = −l1θ̇1 sin θ1 − l2(θ̇1 + θ̇2) sin(θ1 + θ2)− l3(θ̇1 + θ̇2 + θ̇3) sin(θ1 + θ2 + θ3)
ẏ = l1θ̇1 cos θ1 + l2(θ̇1 + θ̇2) cos(θ1 + θ2) + l3(θ̇1 + θ̇2 + θ̇3) cos(θ1 + θ2 + θ3)
ωz = θ̇1 + θ̇2 + θ̇3

Writing this as a matrix product gives: ẋ
ẏ
ωz

 = J

 θ̇1

θ̇2

θ̇3

 ,
Where

J =

[ −l1 sin θ1 − l2 sin(θ1 + θ2)− l3 sin(θ1 + θ2 + θ3) −l2 sin(θ1 + θ2)− l3 sin(θ1 + θ2 + θ3) −l3 sin(θ1 + θ2 + θ3)
l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3) l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3) l3 cos(θ1 + θ2 + θ3)

1 1 1

]
.

(c) Since the Jacobian is 4×4, we can use the determinant to determine where it drops rank.
A hand, or Mathematica computation shows that

detJ = l1l2 sin θ2,

so the manipulator is singular whenever

θ2 = kπ, k = 1, 2, , . . . .

(d) The Mathematica code to implement the animation can be found on the course web page:
http://controls.ame.nd.edu/me469/hw4-1d.ps

6. (a) Figure 2 shows the manipulator with the link frame assignments determined in Homework
2, with a tool frame added at the end effector. The relationship between the tool frame
and frame 3 is a pure displacement in the x direction, i.e.,

T
3 T =


1 0 0 a3

0 1 0 0
0 0 1 0
0 0 0 1

 .
Multiplying 3

0T from Homework 2 and this gives

T
0 T =3

0 T
T
3 T =

 cos(θ1) cos(θ2 + θ3) − (cos(θ1) sin(θ2 + θ3)) sin(θ1) cos(θ1) (a2 cos(θ2) + a3 cos(θ2 + θ3))
cos(θ2 + θ3) sin(θ1) − (sin(θ1) sin(θ2 + θ3)) − cos(θ1) (a2 cos(θ2) + a3 cos(θ2 + θ3)) sin(θ1)

sin(θ2 + θ3) cos(θ2 + θ3) 0 a2 sin(θ2) + a3 sin(θ2 + θ3)
0 0 0 1


(Recall that the direction for the x axis for frame 3 is arbitrary. Therefore, you could have
correctly put the x3 axis in a different orientation. In such a case, the above reasoning
would be the same, but the pure displacement would not necessarily be in the x direction.)
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Figure 2. Frames for Problem 6.
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Since we are only concerned with the (x, y, z) location of the end effector, the Jacobian
can be determined by differentiating the displacement term of T0 T , (the top three terms
of the last column). Let’s denote this vector by

p =

 px
py
pz

 .
Then the Jacobian is

J =

[ ∂px
θ1

∂px
θ2

∂px
θ3

∂py
θ1

∂py
θ2

∂py
θ2

∂pz
θ1

∂pz
θ2

∂pz
θ3

]
=

[
− ((a2 cos(θ2) + a3 cos(θ2 + θ3)) sin(θ1)) − (cos(θ1) (a2 sin(θ2) + a3 sin(θ2 + θ3))) − (a3 cos(θ1) sin(θ2 + θ3))

cos(θ1) (a2 cos(θ2) + a3 cos(θ2 + θ3)) − (sin(θ1) (a2 sin(θ2) + a3 sin(θ2 + θ3))) − (a3 sin(θ1) sin(θ2 + θ3))
0 a2 cos(θ2) + a3 cos(θ2 + θ3) a3 cos(θ2 + θ3)

]
.

(b) A quick mental calculation shows that

det(J) = − (a2a3 (a2 cos θ2 + a3 cos(θ2 + θ3)) sin(θ3)) .

Therefore, the mechanism is singular if θ3 = 0.

7. (a) Figure 3 shows the manipulator with the link frame assignments determined in Homework
2, with a tool frame added at the end effector. For simplicity, assume that the final joint
is “straight,” , i.e., it is aligned with the frames so that the relationship between the tool
frame and frame 3 is a pure displacement in the x direction, i.e.,

T
3 T =


1 0 0 a3

0 1 0 0
0 0 1 0
0 0 0 1

 .
Multiplying 3

0T from Homework 2 and this gives

T
0 T =3

0 T
T
3 T =

 cos(θ2 + θ3) − sin(θ2 + θ3) 0 a1 + cos(θ2) a2 + cos(θ2 + θ3) a3

sin(θ2 + θ3) cos(θ2 + θ3) 0 sin(θ2) a2 + sin(θ2 + θ3) a3

0 0 1 d1

0 0 0 1


(Recall that the direction for the x axis for frame 3 is arbitrary. Therefore, you could have
correctly put the x3 axis in a different orientation. In such a case, the above reasoning
would be the same, but the pure displacement would not necessarily be in the x direction.)
Since we are only concerned with the (x, y, z) location of the end effector, the Jacobian
can be determined by differentiating the displacement term of T0 T , (the top three terms
of the last column). Let’s denote this vector by

p =

 px
py
pz

 .
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Figure 3. Frames for Problem 7.
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Then the Jacobian is

J =


∂px
d1

∂px
θ2

∂px
θ3

∂py
d1

∂py
θ2

∂py
θ2

∂pz
d1

∂pz
θ2

∂pz
θ3


=

 0 − (a2 sin(θ2))− a3 sin(θ2 + θ3) − (a3 sin(θ2 + θ3))
0 a2 cos(θ2) + a3 cos(θ2 + θ3) a3 cos(θ2 + θ3)
1 0 0

 .
(b) A quick mental calculation shows that

det(J) = a2a2 sin θ3.

Therefore, the mechanism is singular if θ3 = 0.
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