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Chapter 2

Second Order Systems

2.1 Introduction

2.2 Motivational Examples

2.3 Review of Complex Variable Theory

This section very briefly reviews some aspects of complex variable theory nec-
essary for the rest of this chapter. It is far from complete. In fact, another
review of complex variable theory containing additional material is included in
Chapter ??.

The usual way to express a complex number, z is to write it as the sum of
its real and imagainary components, i.e.,

z = x+ iy,

where x is the real part of z and y is the complex part. Denote the set of
complex numbers by C. Let Re (z) = x denote the real part of z and Im (z) = y

denote the complex part. Convention also dictates that i =
√
−1 or i2 = −1,

which naturally leads to the normal rules for adding and multiplying complex
numbers, z1 = x1 + iy1 and z2 = x2 + iy2 as

z1 + z2 = (x1 + iy1) + (x2 + iy2)

= (x1 + x2) + i (y1 + y2)

and

z1z2 = (x1 + iy1) (x2 + iy2)

= x1x2 + x1iy2 + iy1x2 + iy1iy2

= (x1x2 − y1y2) + i (x1y2 + y1x2) .

3
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Clearly, since one must specify both the real and imaginary components of a
complex number, it is also convenient to consider them as ordered pairs of real
numbers, i.e., z = (x, y) where the normal rule for vector addition applies, i.e.,

z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) .

In this notation, the product may seem unusual, but is the same definition as
above

z1z2 = (x1 + iy1) (x2 + iy2) = (x1x2 − y1y2, x1y2 + y1x2) .

When presented with an ordered pair of numbers, it is hard to resist plotting
them, as illustrated in Figure 2.1. However, especially in a graphical presen-
tation, it is clear that polar coordinates are an alternative means to specify a
complex number. In particular, z may be represented by the magnitude or ra-
dius, r and angle or argument, θ. Clearly, the relationship between the Cartesian
representation, z = (x, y) and polar representation, z = (r, θ) is

x = r cos θ (2.1)

y = r sin θ (2.2)

r =
√

x2 + y2 (2.3)

θ = arctan2 (y, x) (2.4)

where the arctan 2 function is the arctan which keeps track of the quadrant of
the complex number, so clearly

z = x+ iy = r (cos θ + i sin θ) .

Other than simply manipulating complex numbers, the primary use of them
in this chapter is exponentials of complex numbers. In particular, just as was
the case in Chapter 1, exponential functions will play a fundamental role in
the solution of second order differential equations. The starting point for this
development is Euler’s formula

eiθ = cos θ + i sin theta. (2.5)

The approach for this development will be to take Euler’s formula, Equa-
tion 2.5 as a definition and show that identities we expect to hold for exponen-
tials naturally extend to the complex case when this is used.

Since it is natural to consider

ez = ex+iy = exeiy

take as a definition for when z = x+ iy

ez = ex (cos y + i sin y) .

It is clearly desirable that the usual identities hold such as

ez1ez2 = ez1+z2 (2.6)

and
d

dt
ezt = zezt

hold in the complex case. The fact that they do is left as an exercise.
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Figure 2.1. The complex plane.

2.4 Theory of Second Order Equations

2.4.1 Homogeneous Systems

Distinct Roots

Complex Roots

Repeated Roots

2.4.2 Nonhomogeneous Equations

2.5 The Method of Undetermined Coefficients

Method of Variation of Parameters

2.6 Applications

2.6.1 Free Vibrations

2.6.2 Forced Vibrations

Forced

Resonance

2.6.3 Vibrating Base

Exercises

1. Prove Equation 2.6, i.e.,

ez1ez2 = ez1+z2



6 CHAPTER 2. SECOND ORDER SYSTEMS

where z1 and z2 are complex numbers.

2. Using the fact that
ei(θ1+θ2) = eiθ1eiθ2 ,

prove the common additive trigonometric identities

cos (θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

sin (θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2.



Chapter 3

Multiple-Degree of Freedom

Systems

3.1 Introduction

So far this book has considered the theory and applications of first and second
order differential equations. This chapter considers nth order differential equa-
tions, or equivalently, systems of n first order differential equations. As will
become readily apparent, the theoretical basis for solving such systems relies
heavily upon matrix algebra theory.

3.2 Motivational Example

Consider the mass-spring-damper system illustrated in Figure 3.1. While this
is the simplified prototypical system that we will consider, it also is represen-
tative of a much larger class of useful engineering systems such as automobile
suspensions and civil structures. As is the usual case, assume that x1 and x2 are
absolute displacements of m1 and m2 respectively measured from the equilib-
rium configuration of the system. If there is no gravity, then x1 and x2 will be
measured from the position of the masses when the springs are unstretched, and
if there is gravity, then they will be measured from the position of the masses
when the springs are statically compressed or extended by the weight of the
masses.

Considering a free body diagram for each mass illustrated in Figure 3.2 and
applying Newton’s law gives

m1ẍ1 = −b1ẋ1 − k1x1 + k2 (x2 − x1) + b2 (ẋ2 − ẋ1)

m2ẍ2 = −k2 (x2 − x1) − b2 (ẋ2 − ẋ1) + F (t),

7
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PSfrag replacements

x1 x2

k1

b1

k2

b2

F (t)m1 m2

Figure 3.1. Two degree of freedom mass-spring-damper sys-
tem.

PSfrag replacements

k1x1

b1ẋ1

k2 (x2 − x1)

b2 (ẋ2 − ẋ1)

k2 (x2 − x1)

b2 (ẋ2 − ẋ1)

m1

m2

Figure 3.2. Free body diagrams for masses in Figure 3.1.

and rearranging into the standard form of descending order of derivatives gives

m1ẍ1 + (b1 + b2) ẋ1 − b2ẋ2 + (k1 + k2)x1 − k2x2 = 0 (3.1)

m2ẍ2 − b2ẋ1 + b2ẋ2 − k2x1 + k2x2 = F (t).

These equations are coupled since x1 appears in the x2 equation and vice-
versa. One’s first inclination may be to try to solve one equation for one of either
x1 or x2 and substitute into the other, but such an approach is impossible since
the equations involve the derivatives of the variables as well.

An insightful extrapolation of the method considered in Chapter 2 might
lead one to attempt to solve the homogeneous problem first followed by some
method for the particular solutions; indeed, this is fundamentally the approach
we will utilize. In fact, for the homogeneous case (F (t) = 0), i.e.,

m1ẍ1 + (b1 + b2) ẋ1 − b2ẋ2 + (k1 + k2)x1 − k2x2 = 0

m2ẍ2 − b2ẋ1 + b2ẋ2 − k2x1 + k2x2 = 0,

a good guess may be assume

x1(t) = eλ1t (3.2)

x2(t) = eλ2t,
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and substitute. This will actually work, but as we consider higher and higher
order systems, e.g., systems like in Figure 3.1 but with more masses, presenting
algebra will become somewhat cumbersome. In order to consider the problem
more concisely (and more elegantly) resorting to matrix algebra is the typical
approach. For the mathematically inclined, the abstraction is nice because it
still presents the essence of the problem; however, for those less mathematically
inclined it can be problematic. The key concept to keep in mind is that behind all
the matrix theory presented, the basic approach for the homogeneous problem
is still to simply consider solutions of the form of Equation 3.3.

The following example illustrates the fact that assuming solutions of the
form of Equation 3.3 actually works.

3.2.1 Example For computational simplicity, assume the following numer-
ical parameter values

m1 = 1

m2 = 1

k1 = 1

k2 = 1

b1 = 4

b2 = 4,

which gives

ẍ1 + 8ẋ1 − 4ẋ2 + 2x1 − x2 = 0

ẍ2 − 4ẋ1 − 4ẋ2 − x1 + x2 = 0.

Substituting x1(t) = eλ1t and x2(t) = eλ2t into the differential equations
gives

λ2
1e

λ1t + 8λ1e
λ1t − 4λ2e

λ2t + 2eλ1t − eλ2t = 0

λ2
2e

λ2t − 4λ1e
λ1t + 4λ2e

λ2t − eλ1t + eλ2t = 0.

Dividing the first equation by eλ1t and the second equation by eλ2t

λ2
1 + 8λ1 − 4λ2e

(λ2−λ1)t + 2 − e(λ2−λ1)t = 0

λ2
2 − 4λ1e

(λ1−λ2)t + 4λ2 − e(λ1−λ2)t + 1 = 0,

gives

e(λ2−λ1)t =
λ2

1 + 8λ1 + 2

4λ2 + 1

e(λ1−λ2)t =
λ2

2 + 4λ2 + 1

4λ4 + 1
.

Since these are reciprocals, λ1 and λ2 satisfy
(

λ2
1 + 8λ1 + 2

) (

λ2
2 + 4λ2 + 1

)

− (4λ1 + 1) (4λ2 + 1) = 0. (3.3)



10 CHAPTER 3. MULTIPLE-DEGREE OF FREEDOM SYSTEMS

Resorting to a numerical calculation, we find that the pairs of values

(λ1, λ2) = (−10.2159,−0.2563) and (λ1, λ2) = (−1.2130,−0.3149)

satisfy Equation 3.3, so the solutions

x1(t) = c1e
−10.2159t + c2

finish

The general approach to solve systems of this type is to first convert the
system into a system of first order equations. This is illustrated by the following
example.

3.2.2 Example Let

ξ1 = x1

ξ2 = ẋ1

ξ3 = x2

ξ4 = ẋ2.

Then

d

dt









ξ1
ξ2
ξ3
ξ4









=









ξ2
−b1ξ2−k1ξ1+k2ξ3−k2ξ1+b2ξ4−b2ξ2

m1

ξ3
−k2ξ3+k2ξ1−b2ξ4+b4ξ2

m2
.









(3.4)

Since this equation is linear in the ξi’s, it can be expressed as

d

dt









ξ1
ξ2
ξ3
ξ4









=









0 1 0 0

−k1+k2

m1
− b1+b2

m1

k2

m1

b2
m1

0 0 1 0
k2

m2

b2
m2

− k2

m2
− b2

m2

















ξ1
ξ2
ξ3
ξ4









.

If we let

ξ =









ξ1
ξ2
ξ3
ξ4









and

A =









0 1 0 0

−k1+k2

m1
− b1+b2

m1

k2

m1

b2
m1

0 0 1 0
k2

m2

b2
m2

− k2

m2
− b2

m2









, (3.5)

then this whole system can be expressed simply as

ξ̇ = Aξ. (3.6)

Clearly, the way to solve this equation hinges on the property of the matrix
A. Exploiting the properties of A to solve this equation is our task at hand.
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Now, considering a general first order matrix differential equation of the
form

ξ̇ = Aξ (3.7)

the question arises as to the nature of the solution. Motivated by the results
from Chapters 1 and 2, consider the possibility of a solution of the form

ξ(t) = ξ̂eλt,

where ξ̂ is a constant vector. In full detail,

ξ(t) =











ξ1(t)
ξ2(t)

...
ξn(t)











=











ξ̂1

ξ̂2
...

ξ̂n











eλt =











ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











.

Substituting this into Equation 3.7 gives

λ











ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











= A











ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











.

Inserting an identity matrix gives

λ











1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1





















ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











= A











ξ̂1e
λt

ξ̂2e
λt

...

ξ̂ne
λt











,

which can be rearranged to give

(A− λI) ξ̂ = 0. (3.8)

Recall from linear algebra, that the values for λ that satisfy Equation 3.8 are
the eigenvalues of the matrix A and the ξ̂ that satisfy it are the corresponding
eigenvectors of A. More importantly, what this shows is that solutions to Equa-
tion 3.7 are the product of the eigenvectors and exponentials of the eigenvalues
of A.

3.3 Review of Linear Algebra

In this section we review only topics from linear algebra necessary to solve
differential equations of the form of Equation 3.6.
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3.3.1 Linear independence

Consider the set of vectors {ξ1, . . . , ξk} ∈ R
n, i.e., k vectors that are n elements

“tall” such as

ξi =











ξi,1
ξi,2
...
ξi,n











.

Definition 3.3.1 (Linear (in)dependence) The set {ξ1, . . . , ξn} is linearly
independent if ∃ scalars α1, . . . , αk, where at least one αi 6= 0 such that

α1ξ1 + α2ξ2 + · · · + αkξk =

k
∑

i=1

αiξi = 0.

If the set is non linearly dependent, then it is linearly independent.

A simple example is in order.

3.3.2 Example Let n = 3 and

ξ1 =





1
2
3



 ξ2 =





1
1
1



 ξ3 =





5
7
9



 .

Clearly, determining linear dependence or independence by inspection is not
easy. So we try to solve

α1





1
2
3



+ α2





1
1
1



+ α3





5
7
9



 =





0
0
0





or, as three scalar equations

α1 + α2 + 5α3 = 0

2α1 + α2 + 7α3 = 0

3α1 + α2 + 9α3 = 0.

A tedious calculation gives

α1 = 2

α2 = 3

α3 = 1,

which determines that the set of vectors {ξ1, ξ2, ξ3} is linearly dependent.

An easier approach is to recall Cramer’s Rule and to utilize the followingadd reference for Cramer’s
rule result.
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Proposition 3.3.3 If A ∈ Rn×n and if det (A) = 0 then the set of vectors that
are the columns of A are linearly dependent. Also, the set of vectors that are
the rows of A are linearly dependent. If det (A) 6= 0 then the columns and rows
are linearly independent.

Proof The proof of this result is beyond the scope of this book and relies upon really skip the proof?
an analysis of permutations. �

3.3.4 Example Considering the system in Example 3.3.2, an easy compu-
tation gives

det









1 1 5
2 1 7
3 1 9







 = 0

thus confirming the result from Example 3.3.2 that the vectors are linearly
dependent.

The primary utility of the notion of linear independence is that in a n di-
mensional vector space, a set of n linearly independent vectors, {x1, . . . , xn},
form a basis for the vector space. Thus any vector in that space can be written
as a linear combination, i.e., x =

∑n

i=1 αixi.

Remark 3.3.5 Relationship with the Wronskian

3.3.2 Eigenvalues and eigenvectors

Given a matrix A ∈ Rn×n and a vector x ∈ Rn, the product y = Ax is simply
another vector in Rn. However, there are two classes of the vectors x that give a
special result when multiplied into A. The first special case is then the resulting
vector is all zeros and the second special case is when the resulting vector is just
a scaled version of x. The following two definitions elaborate upon this.

Definition 3.3.6 (Null Space) The null space of a matrix A ∈ Rn×n, denoted
by N (A), is the set of all vectors x ∈ Rn such that

Ax = 0.

In this case 0 is the vector in Rn full of n zeros.

Definition 3.3.7 (Eigenvectors and Eigenvalues) An eigenvector of a ma-

trix A ∈ Rn×n is a non-zero vector, ξ̂, such that

Aξ̂ = λξ̂.

The number λ, which may be real or complex, is the associated eigenvalue.

To compute eigenvalues and eigenvectors, note that

Aξ̂ = λξ̂ =⇒ Aξ̂ − λξ̂ = (A− λI) ξ̂ = 0, (3.9)
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where I is the n × n identity matrix. By Cramer’s rule, Equation 3.9 has a
solution if and only if

det (A− λI) = 0. (3.10)

Equation 3.10 is an nth degree polynomial in λ and hence has n solutions.
Thus, A ∈ Rn×n has n eigenvalues. At this point, all we know is that there are
n eigenvalues. Note that the eigenvalues may be all real and distinct, or some
of them may be repeated and/or complex conjugate pairs.

To compute the eigenvalue associated with a particular eigenvalue λ, simply
substitute the value for λ into Equation 3.9 and solve for each component of ξ̂.
As the following example illustrates, the eigenvector can only be determined up
to a unique scaling factor.

3.3.8 Example Compute the eigenvalues and eigenvectors of

A =

[

1 2
1 3

]

.

First, to compute the eigenvalues,

det (A− λI) = det

([

1 2
1 3

]

− λ

[

1 0
0 1

])

= det

([

1 − λ 2
1 3 − λ

])

= (1 − λ) (3 − λ) − 2

= λ2 − 4λ+ 1

= 0.

Thus,
λ = 2 ±

√
3.

To compute the eigenvectors, substituting the two values for λ into Equa-
tion 3.10 gives

(

A−
(

2 +
√

3
)

I
)

=

[

1 − 2 −
√

3 2

1 3 − 2 −
√

3

] [

ξ1
ξ2

]

which gives

(

−1 −
√

3
)

ξ1 + 2ξ2 = 0

ξ1 +
(

1 −
√

3
)

ξ2 = 0.

A quick computation will show that if we try to solve for one variable, say
ξ2, from one of the equations and substitute into the other equation, we will
end up with the degenerate equation 0 = 0. This is precisely due to the fact
that we are trying to solve a system of linearly dependent equations. Thus
there are an infinite number of solutions.
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The most straightforward approach may be to simply set one of the vari-
ables equal to one and solve for the others. So, in this example, arbitrarily
let ξ2 = 1. Both equations then give ξ1 =

√
3−1, and hence the eigenvector

corresponding to the eigenvalue λ = 2 +
√

3 is

ξ̂ =

[ √
3 − 1
1

]

.

Note that any vector of the form

ξ̂ = α

[ √
3 − 1
1

]

,

where α is a real or complex number is also an eigenvector corresponding
to the eigenvalue λ = 2 +

√
3.

A similar computation (and again arbitrarily setting ξ2 = 1) gives

ξ̂ =

[

−
√

3 − 1
1

]

as an eigenvector corresponding to the eigenvalue λ = 2 −
√

3.

3.4 Summary So Far

1. Systems of first order differential equations of the form

ξ̇ = Aξ ξ ∈ R
n, A ∈ R

n×n

arise naturally in engineering problems with coupled elements.

2. The system is homogeneous since

ξ̇ = Aξ ξ̇ −Aξ = 0

and each homogeneous solution is of the form

ξh(t) = ξ̂ie
λit

where ξ̂i and λi is the ith eigenvector and eigenvalue of the matrix A.

3. In generalA has n eigenvalue/eigenvector pairs {λ1, . . . , λn} and {ξ̂1, . . . , ξ̂n},
(except possibly, as will be considered later, when A has repeated eigen-
values).

4. The general solution to ξ̇ = Aξ is a linear combination of n homogeneous
solutions

ξ(t) = c1ξ̂1e
λ1t + · · · + cnξne

λnt,

and the coefficients ci may be used to satisfy specified initial conditions.
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3.5 Distinct Eigenvalues

The case where the matrix A has distinct eigenvalues is the easiest and will be
considered first. It is basically a straight-forward application of what has been
covered up to this point. First, a critically important theorem.

Theorem 3.5.1 Let A ∈ Rn×n. If A has n distinct, real eigenvalues, then it
has a set of n linearly independent eigenvectors.

Proof Let λ1, . . . , λn denote the distinct eigenvalues of A, i.e., λi 6= λj if

i 6= j and let ξ̂1, . . . , ξ̂n denote the corresponding eigenvectors. To show that
the eigenvectors are linearly independent it suffices to show that

α1ξ̂1 + α2ξ̂2 + · · · + αnξ̂n = 0 ⇐⇒ αi = 0 ∀i,

that is there is no linear combination of the eigenvectors that is zero.
Assume that not all the αi are zero, and without loss of generality, assume

in particular that α1 6= 0. Then

ξ̂1 =
1

α1

n
∑

i=2

αiξ̂i.

Thus

0 = (A− λ1I) ξ̂1

= (A− λ1I)
1

α1

n
∑

i=2

αiξ̂i

=

m
∑

i=2

αi

α1
(A− λ1I) ξ̂i

=

m
∑

i=2

αi

α1

(

Aξ̂i − λ1ξ̂i

)

=

m
∑

i=2

αi

α1

(

λiξ̂i − λ1ξ̂i

)

=

m
∑

i=2

αi

α1
(λi − λ1) ξ̂i.

If not all αi are zero, then the only way for this sum to be zero is if λi = λ1,
which is a contradiction. �

3.5.1 Solution Technique for ξ̇ = Aξ

The general solution to ξ̇ = Aξ is a linear combination of n homogeneous solu-
tions

ξ(t) = c1ξ̂1e
λ1t + · · · + cnξne

λnt,
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and the coefficients ci may be used to satisfy specified initial conditions. Since
the eigenvectors are linearly independent, any initial condition may be satisfied
with the appropriate coefficients, ci’s. In particular, for a specified ξ(0)

ξ(0) = c1ξ̂1 + · · · + cnξ̂n

=
[

ξ̂1 · · · ξ̂n
]







c1
...
cn






.

Thus the coefficients can most concisely be expressed as






c1
...
cn






=
[

ξ̂1 · · · ξ̂n
]−1

ξ(0).

3.5.2 Example Find the homogeneous solutions to

ξ̇ = Aξ where A =

[

1 2
1 0

]

. (3.11)

Aside 3.5.3 Note that the system in Equation 3.11 is exactly equivalent to
the following two systems:

d

dt

[

ξ1
ξ2

]

=

[

1 2
1 0

] [

ξ1
ξ2

]

and

ξ̇1 = ξ1 + 2ξ2

ξ̇2 = ξ1.

If this is not readily apparent by inspection, some time should be invested in
verifying this fact.

As determined previously, the homogeneous solutions of Equation 3.11 can
be computed by determining the eigenvalues and eigenvectors of A. Thus

det (A− λI) =

∣

∣

∣

∣

1 − λ 2
1 −λ

∣

∣

∣

∣

= (1 − λ)λ− 2 = λ2 − λ− 2 − 0,

so the eigenvalues are

λ1 = 2

λ2 = −1.

Substituting each eigenvalue into (A− λI) ξ = 0 gives
[

−1 2
1 −2

] [

ξ1
ξ2

]

=

[

0
0

]

=⇒ ξ̂1 =

[

2
1

]

[

2 2
1 1

] [

ξ1
ξ2

]

=

[

0
0

]

=⇒ ξ̂1 =

[

1
−1

]

.
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Thus

ξ1(t) =

[

2
1

]

e2t

ξ2(t) =

[

1
−1

]

e−t

both satisfy ξ̇ = Aξ.

From the above example, since each of the two solutions are homogeneous
solutions, any linear combination of them also satisfies the differential equation,
i.e., the general solution,

ξ(t) = c1ξ̂1e
λ1t + c2ξ̂2e

λ2t

also satisfies ξ̇ = Aξ. If the problem were an initial value problem, then the
coefficients c1 and c2 could be used to satisfy the initial condition.

3.5.4 Example Returning to Example 3.5.2 determine the solution to

ξ̇ = Aξ

where

ξ(0) =

[

1
0

]

.

The general solution to Equation 3.11 is

ξ(t) = c1

[

2
1

]

e2t + c2

[

1
−1

]

e−t.

Substituting t = 0 and the initial condition gives

ξ(0) = c1

[

2
1

]

+ c2

[

1
−1

]

=

[

1
0

]

which gives

c1 =
1

3

c2 =
1

3
,

so

ξ(t) =

[

2
3
1
3

]

e2t +

[

1
3

− 1
3

]

e−t

is the solution to the initial value problem.

Next are a few useful theorems that sometimes allow for some computational
shortcuts. It turns out that when the matrix A is symmetric, its eigenvalues
and eigenvectors have especially nice properties. First, however, we generalize
the notion of a symmetric matrix to the complex case and the corresponding
properties of a Hermitian matrix.
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Definition 3.5.5 Hermitian Matrix Let A ∈ Cn×n. Let A∗ = A
T
, i.e., A∗

denotes the matrix where A is transposed an all the elements are changed to
their complex conjugates. A is Hermitian if A = A∗.

Note the following:

1. the notation A ∈ Cn×n simply means that A is n by n with complex
numbers for elements; and,

2. in particular, if A is real and symmetric, i.e., A ∈ Rn×n and A = AT it is
Hermitian.

Theorem 3.5.6 If A ∈ Cn×n is Hermitian, i.e., A = A∗, then

1. all the eigenvalues of A are real;

2. A has n linearly independent eigenvectors, regardless of the multiplicity of
any eigenvalue; and,

3. eigenvectors corresponding to different eigenvalues are orthogonal.

Proof 1. Assume A = A∗. Since

Aξ̂i = λiξ̂i =⇒ ξ̂∗i Aξ̂i = λiξ̂
∗
i ξ̂i

the eigenvalue may be expressed as

λi =
ξ̂∗i Aξ̂i

ξ̂∗i ξ̂i
.

Then

λ∗i =

(

ξ̂∗i Aξ̂i

ξ̂∗i ξ̂i

)∗

=

(

ξ̂∗i Aξ̂i
)∗

(

ξ̂∗i ξ̂i
)∗ =

ξ̂∗i A
∗ξ̂i

ξ̂∗i ξ̂i
=
ξ̂∗i Aξ̂i

ξ̂∗i ξ̂i
= λi.

Since λi = λ∗i , it must be real.

2. finish

3. finish �

3.6 Complex Eigenvalues

3.6.1 Example Again consider the mass-spring-damper system illustrated
in Figure 3.1. Let

m1 = 1

m2 = 1

k1 = 10

k2 = 1

b1 = 0.1

b2 = 0.1.
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The damping has been decreased greatly compared to the example for dis-
tinct real roots in Section 3.5, so oscillatory solutions should be expected.
Substituting these values into the A matrix in Equation 3.5 gives

A =









0 1 0 0
−11 −0.2 1 0.1
0 0 0 1
1 0.1 −1 −0.1









which has eigenvalues

λ1 = −0.1093 + 3.3285i

λ2 = −0.1093− 3.3285i

λ3 = −0.0407 + 0.9487i

λ4 = −0.0407− 0.9487i,

and corresponding eigenvectors

ξ̂1 =









−0.0094− 0.2859i
0.9527

−0.0074 + 0.0287i
−0.0946− 0.0278i









ξ̂2 =









−0.0094 + 0.2859i
0.9527

−0.0074− 0.0287i
−0.0946 + 0.0278i









ξ̂3 =









0.0713 + 0.0060i
−0.0086 + 0.0674i

0.7216
−0.0294 + 0.6846i









ξ̂4 =









0.0713− 0.0060i
−0.0086− 0.0674i

0.7216
−0.0294− 0.6846i









.

Observe that the eigenvalues occur in complex conjugate pairs. This
should be obviously expected since eigenvalues are the roots of a polynomial.
Less obvious, but probably not surprising is that the eigenvectors also occur
in complex conjugate pairs. The reason this is true is given by the proof of
the following.

Proposition 3.6.2 If A ∈ Rn×n and two eigenvalues of A are such that λi =

λj , then if ξ̂i is the eigenvector corresponding to λi, λ̂i is an eigenvector corre-
sponding to λj .

Proof Eigenvector ξ̂i satisfies

(A− λiI) ξ̂i = 0.

Taking the complex conjugate of both sides gives

(A− λiI) ξ̂i = 0
(

A− λiI
)

ξ̂i = 0

(A− λjI) ξ̂i = 0.

Thus we make take ξ̂j = ξ̂i. �
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To solve the initial value problem

ξ̇ = Aξ ξ(0) = ξ0

we may to proceed as before and simply write the general solution

ξ(t) = c1ξ̂1e
λ1t + · · · c1ξ̂neλnt,

substitute t = 0
ξ(0) = c1ξ̂1 + · · · c1ξ̂n,

and solve for the unknown coefficients, ci. The following example illustrates
that fact. In order to make it computationally simple, however, a simple 2 × 2
system is considered rather than the 4 × 4 oscillation problem.

3.6.3 Example Solve

ξ̇ = Aξ ξ(0) =

[

1
1

]

where

A =

[

1 −2
2 1

]

.

Computing the eigenvalues gives

det (A− λI) = (1 − λ)2 + 4 = 0 =⇒ λ = 1 ± 2i.

For λ1 = 1 + 2i
[

−2i −2
2 −2i

] [

x1

x2

]

=

[

0
0

]

=⇒ ξ̂1 =

[

x1

x2

]

=

[

1
−i

]

and for λ2 = 1 − 2i
[

2i −2
2 2i

][

x1

x2

]

=

[

0
0

]

=⇒ ξ̂1 =

[

x1

x2

]

=

[

1
i

]

So the general solution is

ξ(t) = c1

[

1
−i

]

e(1+2i)t + c2

[

1
i

]

e(1−2i)t

and at t = 0,

ξ(0) = c1

[

1
−i

]

+ c2

[

1
i

]

=

[

1 1
−i i

] [

c1
c2

]

=

[

1
1

]

.

Either solving for c1 and c2 by inverting the matrix or by eliminating one
coefficient from one equation and substituting into the other gives

c1 =
1

2
+

1

2
i

c2 =
1

2
− 1

2
i.
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Finally, substituting c1 and c2 into the general solution gives

ξ(t) =

[

1
2 + 1

2 i
1
2 − 1

2 i

]

e(1+2i)t +

[

1
2 − 1

2 i
1
2 + 1

2 i

]

e(1−2i)t.

This is the correct answer, however it is somewhat dissatisfy ing in that
it is complex; whereas, the matrix A and the initial conditions were all real.
Quite a bit more manipulation using Euler’s formula eliminates this minor
problem and yields

ξ(t) =

[

cos 2t− sin 2t
cos 2t+ sin 2t

]

et.

The preceding example illustrates that the general solution may still be cor-
rectly expressed as a linear combination of the eigenvalues times the exponential
of the corresponding eigenvectors. However,

1. the solution may not “naturally” result in a purely real expression for ξ,
which is what is expected;

2. further, and perhaps arduous manipulation may be necessary to determine
the form of the solution that is purely real;

3. many computations involving complex numbers, requiring four operations
for multiplication and two operations for addition, are involved in com-
puting the solution;

4. the fact that the eigenvalues and eigenvectors occur in complex conjugate
pairs was not exploited at all.

In order to make the computations less burdensome, an alternative approach
which is analogous to the approach in the case of second order system with
complex roots is utilized. Fundamentally, the “shortcut” to this approach is
based upon the conjugate nature of the eigenvalues and eigenvectors.

Consider a pair of complex conjugate eigenvalues and eigenvectors, denoted
by

λ1 = µ+ iω

λ2 = µ− iω

and

ξ̂1 = a + ib

ξ̂2 = a − ib.

Note that a and b are vectors in Rn.
The general solution is of the form

ξ(t) = c1ξ̂1e
λ1t + c2ξ̂2e

λ2t + · · · .



3.6. COMPLEX EIGENVALUES 23

Substituting for the components of λ1, λ2, ξ̂1 and ξ̂2 and using Euler’s formula
gives

ξ(t) = c1ξ̂1e
λ1t + c2ξ̂2e

λ2t + · · ·
= c1 (a + ib) e(µ+iω)t + c2 (a − ib) e(µ−iω)t + · · ·
= c1 (a + ib) eµt (cosωt+ i sinωt) + c2 (a − ib) eµt (cosωt− i sinωt) + · · ·
= eµt [c1a cosωt− c1b sinωt+ ic1a sinωt+ ic1b cosωt +

c2a cosωt− c2b sinωt− ic2b cosωt− ic2a sinωt] + · · ·
= eµt [(c1 + c2) a cosωt− (c1 + c2)b sinωt] +

eµti [(c1 − c2) a sinωt+ (c1 − c2)b cosωt] + · · · .

Let

k1 = c1 + c2

k2 = i (c1 − c2)

and substituting into ξ(t) gives

ξ(t) = k1e
µt (a cosωt− b sinωt) + k2e

µt (a sinωt+ b cosωt) + · · · . (3.12)

3.6.4 Example Returning to the mass-spring-damper system in Exam-
ple 3.6.1, observe that we have

µ1 = −0.1093

ω1 = 3.3285

µ2 = −0.0407

ω2 = 0.9487

and

a1 =









−0.0094
0.9527
−0.0074
−0.0946









b1 =









−0.2859
0

0.0287
−0.0278









a2 =









0.0713
−0.0086
0.7216
−0.0294









b2 =









0.0060
0.0674

0
0.6846









.

The general solution is of the form

ξ(t) = k1e
µ1t (a1 cosω1t− b1 sinω1t) + k2e

µ1t (a1 sinω1t+ b1 cosω1t)

+ k3e
µ2t (a2 cosω2t− b2 sinω2t) + k4e

µ2t (a2 sinω2t+ b2 cosω2t) ,
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or substituting all the numerical values

ξ(t) = k1e
−0.1093t

















−0.0094
0.9527
−0.0074
−0.0946









cos 3.3285t−









−0.2859
0

0.0287
−0.0278









sin 3.3285t









+ k2e
−0.1093t

















−0.0094
0.9527
−0.0074
−0.0946









sin 3.3285t+









−0.2859
0

0.0287
−0.0278









cos 3.3285t









+ k3e
−0.0407t

















0.0713
−0.0086
0.7216
−0.0294









cos 0.9487t−









0.0060
0.0674

0
0.6846









sin 0.9487t









+ k4e
−0.0407t

















0.0713
−0.0086
0.7216
−0.0294









sin 0.9487t+









0.0060
0.0674

0
0.6846









cos 0.9487t









.

3.7 Repeated Eigenvalues

3.7.1 Example Consider ξ̇ = Aξ where

A =

[

2 1
0 2

]

.

Computing the eigenvalues gives

(2 − λ)2 = 0 =⇒ λ = 2.

Computing the eigenvectors,

[

0 1
0 0

][

x1

x2

]

=

[

0
0

]

=⇒ ξ̂ =

[

1
0

]

.

�

In the preceding example, the eigenvalue λ = 2 was repeated. It may not
be surprising that there also is only one eigenvector, ξ̂ as well. However, things
are not so simple. Consider the following example.

3.7.2 Example Consider ξ̇ = Aξ where

A =

[

2 0
0 2

]

.
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Computing the eigenvalues gives

(2 − λ)
2

= 0 =⇒ λ = 2,

which is exactly the same as before. Now computing the eigenvectors,
[

0 0
0 0

][

x1

x2

]

=

[

0
0

]

.

In this case, however, we have that

ξ̂1 =

[

1
0

]

and ξ̂2 =

[

0
1

]

both satisfy the eigenvector equation and are linearly independent. �

These two examples illustrate the fact that when there are n repeated eigen-
values, there may or may not be n linearly independent eigenvectors. This is
problematic in that to use the approach utilized so far to solve ξ̇ = Aξ we need
n linearly independent eigenvectors in order to obtain a general solution.

First we address the practical computational matter of determining how
many linearly independent eigenvectors are associated with a repeated eigen-
value. Then we delineate the solution techniques for each case.

3.7.1 Geometric and Algebraic Multiplicities

The number of times that an eigenvalue is repeated is called its algebraic mul-
tiplicity. Similarly, the number of linearly independent eigenvectors associated
with an eigenvalue is called its geometric multiplicity. Clearly, the former is an
algebraic concept and the latter a geometric one as is clear from the following
more general mathematical definitions of the two terms.

Definition 3.7.3 (Algebraic Multiplicity) Let A ∈ Rn×n and let

det (A− λI) =

m
∑

i=1

(λ− λi)
ki

where each λi is distinct. Note that
∑m

i=1 ki = n. The number ki is the algebraic
multiplicity of eigenvalue λi.

3.7.4 Example Add example to illustrate the general characteristic equa-
tion formula. �

Definition 3.7.5 (Geometric Multiplicity) Let A ∈ Rn×n. The dimension
of the null space of (A− λiI) is the geometric multiplicity of eigenvalue λi.

The definition of geometric multiplicity should make sense. Since the defi-
nition of an eigenvector is a nonzero vector, ξ̂ satisfying

(A− λI) ξ̂ = 0,
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and the null space of a matrix is simply all the vectors that, when multiplied
into the matrix produce the zero vector, the number of linearly independent
vectors that produce the zero vector is simply the dimension of the null space.

First we will consider a matrix with distinct eigenvalues to illustrate the
concept of the dimension of the null space of (A− λI) being the number of
linearly independent eigenvectors associated with an eigenvalue as well as the
simple procedural aspect of computing it.

3.7.6 Example Determine all the linearly independent eigenvectors of

A =





1 0 1
0 1 1
0 −2 4



 .

The characteristic equation is
∣

∣

∣

∣

∣

∣

(1 − λ) 0 1
0 (1 − λ) 1
0 −2 (4 − λ)

∣

∣

∣

∣

∣

∣

= λ3 − 6λ2 + 11λ− 6 = 0,

so the eigenvalues are

λ1 = 1

λ2 = 2

λ3 = 3.

Since the eigenvalues are distinct, by Theorem 3.5.1, each should have one
linearly independent eigenvector associated with it and dim (N (A− λiI)) =
1 for each λi.

In detail, for λ1 = 1 the associated eigenvalue satisfies

(A− λ1I) ξ̂1 = (A− I) ξ̂1 = 0.

Recall, to solve a set of linear equations

Ax = b,

where A ∈ Rn×n, b, x ∈ Rn where A and b are given and x is to be deter-
mined, one approach is to construct the augmented matrix

[

A b
]

and use row reduction operations to convert the left part of the augmented
matrix to a convenient form (typically either the identity or a triangular
form). Somewhat arbitrarily, we will use upper triangular form.

Hence, in this example, the augmented matrix is




1 − λ 0 1 0
0 1 − λ 1 0
0 −2 4 − λ 0



 . (3.13)
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Substituting λ1 = 1 and making a couple elementary row manipulations
yields




0 0 1 0
0 0 1 0
0 −2 3 0



 ⇐⇒





0 −2 3 0
0 0 1 0
0 0 1 0



 ⇐⇒





0 −2 3 0
0 0 1 0
0 0 0 0



 .

The last augmented matrix has one row of zeros, indicating that the
dimension of its null space is one, so there is one linearly independent eigen-
vector associated with λ1 = 1.. From the second row, the third component
of ξ̂1 clearly must be zero. Using this fact and noting the first row indicates
that the second component must also be zero. Finally, the first component
of ξ̂1 is clearly arbitrary. Thus, the eigenvector must be

ξ̂1 =





1
0
0



 .

Similarly, substituting λ2 = 2 into Equation 3.13 gives




−1 0 1 0
0 −1 1 0
0 −2 2 0



 ⇐⇒





−1 0 1 0
0 −1 1 0
0 0 0 0



 .

Picking the third component of ξ̂2 to be one, we have

ξ̂2 =





1
1
1



 .

Finally, for λ3 = 3




−2 0 1 0
0 −2 1 0
0 −2 1 0



 ⇐⇒





−2 0 1 0
0 −2 1 0
0 0 0 0



 .

This time picking the third component of ξ̂3 to be 2 gives

ξ̂3 =





1
1
2



 .

�

Now consider an example with repeated eigenvalues.

3.7.7 Example Determine the eigenvalues and eigenvectors of

A =





0 1 1
−4 5 1
−5 1 5



 .



28 CHAPTER 3. MULTIPLE-DEGREE OF FREEDOM SYSTEMS

The characteristic equation is

λ3 − 10λ2 + 32λ− 32 = 0,

so the eigenvalues are

λ1 = 2

λ2 = 4

λ3 = 4.

For λ1 = 2




−2 1 1 0
−4 3 1 0
−4 1 3 0



 ⇐⇒





−2 1 1 0
0 1 −1 0
0 −1 1 0



 ⇐⇒





−2 1 1 0
0 1 −1 0
0 0 0 0



 .

Since there is one row of zeros, there is one linearly independent eigenvalue
associated with λ1 = 2, which is expected since it is not repeated. Picking
the third component of ξ̂1 to be one,

ξ̂1 =





1
1
1



 .

Now, for λ2 = 4




−4 1 1 0
−4 1 1 0
−4 1 1 0



 ⇐⇒





−4 1 1 0
0 0 0 0
0 0 0 0



 .

Since there are two rows of zeros, there are two linearly independent eigen-
vectors associated with λ2 = 4. Picking the third component of ξ̂2 to be 4
and the second component to be zero, we have

ξ̂2 =





1
0
4



 .

Since there are two rows of zeros, we can find another solution to the equa-
tions. To determine one, we pick another combination of variables with the
only restriction that it cannot be a scaled version of two of the components
of ξ̂2. Picking the third component to be zero and the second component
to be 4 gives

ξ̂3 =





1
4
0



 .

The fact that there were two rows of zeros in upper triangular form of
the augmented matrix indicates that the dimension of the null space of
(A− 4I) was two. Thus, we were able to determine two linearly independent
eigenvectors associated with the repeated eigenvalue. �
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Finally, just to complete the picture, the following is an example of an eigen-
value with algebraic multiplicity two but a geometric multiplicity of one.

3.7.8 Example Returning to the matrix from Example 3.7.1 with

A =

[

2 1
0 2

]

,

we computed previously that λ = 2 was the only eigenvalue and that it had
an algebraic multiplicity of two. Constructing the augmented matrix for
A− 2I gives

[

0 1 1
0 0 0

]

.

Since there is one row of zeros, the geometric multiplicity is one. Clearly the
first component of the eigenvector is arbitrary and the second component
must be zero. Thus, for example

ξ̂1 =

[

1
0

]

.

�

Finally, after this rather extensive detour into the realm of the nature of
repeated eigenvalues and the computational details of computing the associated
eigenvectors, we return to the main task at hand which is to solve ξ̇ = Aξ.

3.7.2 Homogeneous Solutions with Repeated Eigenvalues

Equal Algebraic and Geometric Multiplicities

This is the case for which to hope because the solution technique is identical
to the case of distinct eigenvalues. Even if there are repeated eigenvalues, the
general solution is simply

ξ(t) = c1ξ̂1e
λ1t + c2ξ̂2e

λ2t + · · · + cnξ̂ne
λnt.

This is, in fact, the general solution. Since the set of eigenvectors is linearly
independent, it will always be possible to solve for the coefficients for a specified
initial condition regardless of the fact that some of the eigenvalues are repeated.

Repeated Complex Eigenvalues

The statement immediately preceding this is still correct, even if there are com-
plex conjugate eigenvalues and even if some of the repeated eigenvalues are
complex conjugates. In the first case where the repeated eigenvalues are real,
the more convenient form of the solution will be to simply convert the complex
conjugate eigenvalue and eigenvector pairs to the real and imaginary compo-
nents and express the two homogeneous solutions corresponding to the complex
conjugate pair in terms of the real functions given in Equation 3.12.
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Algebraic Multiplicity Greater than the Geometric Multiplicity

The case where the geometric multiplicity of an eigenvalue is less than its al-
gebraic multiplicity is much more interesting, but unfortunately, requires a bit
more work. In this case, if we simply compute eigenvectors, we will have a set
of homogeneous solutions of the form

ξh(t) = ξ̂ie
λit,

but we will not have n linearly independent eigenvalues, so the partial general
solution will be of the form

ξ(t) = c1ξ̂1e
λ1t + c2ξ̂2e

λ2t + · · · + cmξ̂me
λmt,

where m < n. In this case, it will not be possible to compute coefficients, ci

to satisfy any set of initial conditions since there is not a full set of linearly
independent eigenvectors.

Recall from Chapter 2 that in the case of repeated roots, the approach was
to multiply the one homogeneous solution by the independent variable, t and
add it to the first solution. The following two examples illustrate that fact, but
also then goes to make a connection to the matrix approach that is the subject
of this chapter.

3.7.9 Example Find the general solution to

ẍ+ 4ẋ+ 4x = 0. (3.14)

Assuming x(t) = eλt and substituting gives

λ2 + 4λ+ 4 = 0 (3.15)

(λ+ 2)2 = 0.

So, λ = 2 is the solution. Hence, xh(t) = e−2t is a homogeneous solution.
Since there is no other root to the characteristic equation, the approach
(which was fully detailed in Chapter 2) is to assume a second homogeneous
solution of the form xh(t) = te−2t. The fact that this a second homogeneous
solution can be verified by substituting it into Equation 3.14 and the fact
that it is linearly independent can be verified by computing the Wronskian.
Thus the general solution to Equation 3.14 is

x(t) = c1e
−2t + c2te

−2t. (3.16)

�

3.7.10 Example Consider the same equation as in Equation 3.14, but first
convert it into a system of two first order equations. The equivalent system
is

ẋ =

[

0 1
−4 −4

]

x where x =

[

x1

x2

]

=

[

x

ẋ

]

.
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Computing the eigenvalues for the matrix in the preceding equation gives

∣

∣

∣

∣

−λ 1
−4 −4− λ

∣

∣

∣

∣

= λ2 + 4λ+ 4 = (λ + 2)2 = 0.

It is no coincidence that the characteristic equation for the eigenvalue prob-
lem is exactly the same as Equation 3.15. Thus, the only distinction is
one of nomenclature: there are “repeated eigenvalues” instead of “repeated
roots.” Now computing the eigenvectors corresponding to λ1 = −2 gives

[

2 1 0
−4 −2 0

]

⇐⇒
[

2 1 0
0 0 0

]

.

Thus, there is one linearly independent eigenvector,

ξ̂1 =

[

1
−2

]

.

The goal is to obviously construct a solution that is equivalent to the general
solution in Equation 3.16. Differentiating Equation 3.16 gives

ẋ(t) = −2c1e
−2t + c2e

−2t − 2c2te
−2t,

or in vector form

d

dt

[

x

ẋ

]

=
d

dt

[

x1

x2

]

= c1

[

1
−2

]

e−2t + c2

([

0
1

]

e−2t + t

[

1
−2

]

e−2t

)

= c1ξ̂
1
1e

λ1t + c2

(

ξ̂21e
λ1t + tξ̂11e

λ1t
)

.

Clearly, in the notation of the last line in the above equation, ξ̂11 is simply
the eigenvector that we already computed. The question is how to compute
the other vector, ξ̂21 . Note that the superscripts for the ξ̂’s are indices, not
powers.

Recall, that the whole business regarding eigenvalues and eigenvectors
came about by simply assuming solutions of the form ξ(t) = ξ̂eλt. Substi-

tuting this into ξ̇ = Aξ then indicated that ξ̂ had to be an eigenvector and
λ had to be an eigenvalue. The approach now is pretty obvious: substitute
the assumed form of the second homogeneous solution

ξh(t) =
(

ξ̂21 + tξ̂11

)

eλt

to verify first, that ξ̂11 indeed satisfies the eigenvector equation (so that
the fact that they are the same in this example is not a coincidence) and

second, to determine what sort of equation ξ̂21 must satisfy. Differentiating
and substituting gives

λ
(

ξ̂21 + tξ̂11

)

eλt + ξ̂11e
λt = A

(

ξ̂21 + tξ̂11

)

eλt.
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Since this must hold for all t, the coefficients of the different powers of t
must be equal. Therefore, collecting terms multiplying the same powers of
t gives

t0 : λ
(

ξ̂21 + ξ̂11

)

eλt = Aξ̂21e
λt

t1 : λξ̂11e
λt = Aξ̂11e

λt.

Since eλt is never zero we have the following two equations

(A− λI) ξ̂11 = 0

(A− λI) ξ̂21 = ξ̂11 .

The first equation has already been solved, so

ξ̂11 =

[

1
−2

]

.

For the second equation we have

[

2 1 1
−4 −2 −2

]

⇐⇒
[

2 1 1
0 0 0

]

.

Clearly, as with eigenvectors, the solution is determined only up to an ar-
bitrary scaling constant. In this case, clearly, the vector

ξ̂21 =

[

0
1

]

satisfies the equation for ξ̂21 .

The task now is to generalize the approach used in the above example to
systems of n equations where the multiplicity of a repeated eigenvalue may be
greater than 2.

Now consider the general case of

ξ̇ = Aξ A ∈ R
n×n,

and assume that the algebraic multiplicity of eigenvalue λi is m but that the
geometric multiplicity is less than m. Motivated by the above example, clearly
the approach is to multiply exponential solutions by t to obtain additional lin-
early independent solutions. In the example, since the system was second order,
the highest power of t in the general solution was 1; however, in the case where
the algebraic multiplicity is greater than 2, additional powers of t may be neces-
sary. Therefore, let us propose the following sequence of homogeneous solutions



3.7. REPEATED EIGENVALUES 33

corresponding to eigenvalue λi with algebraic multiplicity m

ξh1
(t) = ξ̂1i e

λit

ξh2
(t) = ξ̂2i e

λit + tξ̂1i e
λit

ξh3
(t) = ξ̂3i e

λit + tξ̂2i e
λit +

t2

2
ξ̂1i e

λit

...

ξhm
(t) = ξ̂m

i e
λit + tξ̂m−1

i eλit +
t2

2
ξ̂m−2
i eλit + · · · + tm−1

m− 1
ξ̂1i e

λit.

Differentiating the ξh1
(t) and substituting into ξ̇ = Aξ gives the expected

equation

λiξ̂
1
i = Aξ̂1i .

Differentiating the second equation and substituting into ξ̇ = Aξ gives

λiξ̂
2
i e

λit + ξ̂1i e
λit + λitξ̂

1
i e

λit = A
(

ξ̂2i e
λit + tξ̂1i e

λit
)

.

Since this must be true for all t, the coefficients for each power of t must be
equal, so

t0 : λiξ̂
2
i + ξ̂1i = Aξ̂2i

t1 : λiξ̂
1
i = Aξ̂1i ,

where the term eλit has been canceled since it is never equal to zero. Proceeding
in this manner and differentiating the mth proposed solution gives

ξ̇hm
(t) = λiξ̂

meλit + ξ̂m−1
i eλit + λitξ̂

m−1
i + tξ̂m−2

i eλitλit
2ξ̂m−2

i eλit +

· · · + tm−2ξ̂1i e
λit + λit

m−1ξ̂t
ie

λit. (3.17)

Also,

Aξhm
(t) = A

(

ξ̂m
i e

λit + tξ̂m−1
i eλit + t2ξ̂m−2

i eλit + · · · + tm−1ξ̂1i e
λit
)

(3.18)

Since eλit is never zero it can be canceled from both equations and since ξ̇ = At

must hold for all t, each the terms for each power of t in Equations 3.17 and
3.18, which gives

t0 : λiξ̂
m
i + ξ̂m−1

i = Aξ̂m
i

t1 : λiξ̂
m−1
i + ξ̂m−2

i = Aξ̂m−1
i

t2 : λiξ̂
m−2
i + ξ̂m−2

i = Aξ̂m−2
i

...
...

tm−1 : λiξ̂
1
i = Aξ̂1i .
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Note that in every case, the following sequence of equations is obtained

(A− λiI) ξ̂
1
i = 0 (3.19)

(A− λiI) ξ̂
2
i = ξ̂11

(A− λiI) ξ̂
3
i = ξ̂21
...

(A− λiI) ξ̂
m
i = ξ̂m−1

1

The first equation is simply the equation for a regular eigenvalue. The vec-
tors ξ̂2i through ξ̂m

i are called generalized eigenvectors and are determined by
sequentially solving the second through mth equations.

Note that if the second line of Equation 3.19 is multiplied on the left by
(A− λiI) then

(A− λiI) (A− λiI) ξ̂
2
i = (A− λiI) ξ̂

1
i ,

but since
(A− λiI) ξ̂

1
i = 0

then
(A− λiI)

2
ξ̂2i = 0.

Similarly, multiplying the jth line in Equation 3.19 by (A− λiI)
j

where 1 <

j < m gives
(A− λiI)

j
ξ̂

j
i = 0.

Further note that

(A− λiI)
m
ξ̂

j
i = (A− λiI)

m−j
(A− λiI)

j
ξ̂

j
i = 0.

Hence, all the eigenvectors and generalized eigenvectors associated with λi are
in the null space of (A− λiI)

m, which motivates the following definition.

Definition 3.7.11 (Generalized Eigenspace) The null space of (A− λiI)
m

is the generalized eigenspace of A associated with λi.

The following theorem assures us that the dimension of the generalized
eigenspace associated with λi is the same as the algebraic multiplicity of λi.
This fact is necessary in order to ensure that enough generalized eigenvectors
exist to generate a full set of linearly independent homogeneous solutions to
construct a general solution.

Theorem 3.7.12 The dimension of the generalized eigenspace of A associated
with λi is equal to the algebraic multiplicity of the eigenvalue λi, i.e., if the
algebraic multiplicity of the eigenvalue λi is m, then

dim (N (A− λiI)
m

) = m.

Proof The reader is referred to [1] and [2]. �
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The following theorem gives the form of the homogeneous solution for any
vector in generalized eigenspace of λi.

Theorem 3.7.13 For A ∈ Rn×n and λi an eigenvector of A with algebraic
multiplicity m, if

(A− λiI)
m
ξ̂ = 0,

then

ξh(t) =

(

ξ̂i + t (A− λiI) ξ̂i +
t2

2
(A− λiI)

2
ξ̂i + · · · + tm−1

m− 1
(A− λiI)

m−1
ξ̂i

)

eλit

satisfies
ξ̇ = Aξ.

Proof This is by direct computation. Simply differentiate ξh(t) and substitute
into ξ̇ = Aξ. Differentiating ξh(t) gives

ξ̇h(t) = λi

(

ξ̂i + t (A− λiI) ξ̂i +
t2

2
(A− λiI)

2
ξ̂i + · · · + tm−1

m− 1
(A− λiI) ξ̂i

)

eλit +

(

(A− λiI) ξ̂i + t (A− λiI)
2
ξ̂ + · · · + tm−2

m− 1
(A− λiI) ξ̂i

)

eλit.

Equating ξ̇h(t) with Aξh(t) and equating powers of t gives

λiξ̂i + (A− λiI) ξ̂i = Aξ̂i

λi (A− λiI) ξ̂i + (A− λiI)
2
ξ̂i = A (A− λiI) ξ̂i

�

So, finally we have the following solution technique for ξ̇ = Aξ, for A ∈ Rn×n

where λi has an algebraic multiplicity of m.

1. For the nonrepeat ed eigenvalues, λj , the corresponding homogeneous solu-

tion is ξh(t) = ξ̂je
λjt. If two of these eigenvalues are a complex conjugate

pair, then converting the homogeneous solution to sines and cosines as
outlined in Section 3.6 is preferable.

2. For each repeated λi

(a) Determine the smallest power, p, such that

dimN (A− λiI)
p

= m.

(b) Find all m ξ̂i in the generalized eigenspace of λi, i.e.,

(A− λiI)
p
ξ̂ = 0.

These ξ̂i may be regular eigenvectors, generalized eigenvectors or
linear combinations thereof.
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(c) The homogeneous solution corresponding to each ξ̂i is

ξh(t) =

(

ξ̂i + t (A− λiI) ξ̂i +
t

2
(A− λiI)

2
ξ̂ + · · · + tm−1

m− 1
(A− λiI) ξ̂i

)

eλit.

A few examples will help illustrate the approach.

3.7.14 Example Determine the general solution to ξ̇ = Aξ where

A =









1 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2









.

Since the matrix is triangular, the eigenvalues are the values along the
diagonal. Thus

λ1 = 1

λ2 = 2

λ3 = 2

λ4 = 2.

Thus, λ = 2 is an eigenvalue with algebraic multiplicity of 4. For λ1 = 1,
the eigenvector is

(A− λ1I) ξ̂1 = 0 ⇐⇒









0 0 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 0









⇐⇒ ξ̂1 =









1
0
0
0









.

For λ2 = λ3 = λ4 = 2

(A− λ1I) ξ̂2 = 0 ⇐⇒









−1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0









.

Since there is only one row of zeros, the dimension of the null space of
(A− λ2I) is one, and hence there is only one regular eigenvector, and hence
we must also compute two generalized eigenvectors. Clearly

ξ̂2 = ξ̂12 =









0
1
0
0









.

To compute the generalized eigenvectors

(A− λ2I) ξ̂
2
2 = ξ̂12 ⇐⇒









−1 0 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0









⇐⇒ ξ̂22 =









0
0
1
0









,
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and

(A− λ2I) ξ̂
3
2 = ξ̂22 ⇐⇒









−1 0 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0









⇐⇒ ξ̂32 =









0
0
0
1









.

Thus, the general solution is

ξ(t) = c1ξ̂1e
λ1t + c2ξ̂2e

λ2t + c3

(

ξ̂22 + tξ̂12

)

eλ2t + c4

(

ξ̂32 + tξ̂22 +
t2

2
ξ̂12

)

eλ2t

= c1









1
0
0
0









et + c2









0
1
0
0









e2t + c3

















0
0
1
0









+ t









0
1
0
0

















e2t +

c4

















0
0
0
1









+ t









0
0
1
0









+
t2

2









0
1
0
0

















e2t.

That this is a solution may be verified by directly substituting this into the
original differential equation.

The previous example illustrates that generalized eigenvectors are also not
unique. Note that in both ξ̂22 and ξ̂32 the second component could be any real

number. However, since this would simply be adding a scale multiple of ξ̂2 = ξ̂12
to the generalized eigenvector, the impact on the solution to the differential
equation would only be to alter the values of the coefficients, ci if some initial
conditions were specified.

The following is an example of a 4×4 system where there are two eigenvalues
with algebraic multiplicity of two, but for one of them there are two linearly
independent eigenvectors and for the other there is only one, so a generalized
eigenvector must be computed.

3.7.15 Example Determine the general solution to ξ̇ = Aξ where

A =









2 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3









.

Since the matrix is triangular, the eigenvalues are the values along the
diagonal. Thus

λ1 = 2

λ2 = 2

λ3 = 3

λ4 = 3.
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For λ1 = λ2 = 2

(A− λ1I) ξ̂1 = 0 ⇐⇒









0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 1 0









.

Since there are two rows of zeros, the dimension of the null space of (A− λ1I)
is two, and hence there are two regular eigenvectors. Thus the geometric
multiplicity is equal to the algebraic multiplicity, and hence it suffices to
compute the two regular eigenvectors, which are

ξ̂1 =









1
0
0
0









and ξ̂2 =









0
1
0
0









.

For λ3 = λ4 = 3

(A− λ3I) ξ̂1 = 0 ⇐⇒









−1 0 0 0 0
0 −1 0 0 0
0 0 0 1 0
0 0 0 0 0









.

Since there is only one row of zeros, the dimension of the null space of
(A− λ3I) is one, and hence there is only one regular eigenvector. In par-
ticular,

ξ̂3 = ξ̂13 =









0
0
1
0









.

Computing the generalized eigenvector

(A− λ3I) ξ̂
2
3 = ξ̂13 ⇐⇒









−1 0 0 0 0
0 −1 0 0 0
0 0 0 1 1
0 0 0 0 0









⇐⇒ ξ̂23 =









0
0
0
1









.

Hence a general solution is

ξ(t) = c1ξ̂1e
λ1t + c2ξ̂2e

λ1t + c3ξ̂
1
3e

λ3t + c4

(

ξ̂23 + tξ̂13

)

eλ3t

= c1









1
0
0
0









e2t + c2









0
1
0
0









e2t + c3









0
0
1
0









e3t +

c4

















0
0
0
1









+ t









0
0
1
0

















e3t.
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Figure 3.3. Two degree of freedom mass-spring-damper sys-
tem.

Again, as in the previous example, the generalized eigenvector can only
be uniquely determined up to the addition of a scale multiple of its associ-
ated regular eigenvectors.

3.8 Diagonalization and Jordan Normal Form

3.9 Applications of Homogeneous Systems of First

Order Equations

3.9.1 Classical Normal Modes of Vibration

Consider the system illustrated in Figure 6.1. We will first analyze this system
using the approach from classical vibrations theory and then relate it to the
material covered previously in this chapter.

A simple analysis of the free body diagrams for the two masses yields the
following equations of motion

mẍ1 + (k1 + k3)x1 − k3x2 = 0 (3.20)

mẍ2 + (k2 + k3)x2 − k3x2 = 0.

Classical Approach

The classical approach is simply to assume (perhaps based upon some intuitive
insight into the problem) the form of the solutions for masses one and two. For
present purposes, assume

x1(t) = a1 cosωt

x2(t) = a2 cosωt.

Note the assume form of the solution is very restrictive; in particular, it will
at best only be valid when ẋ1(0) = ẋ2(0) = 0; furthermore, it assumes the
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frequency of oscillation of the two masses must be the same. Regardless, let us
proceed to substitute these solutions into the equations of motion. Upon doing
so we obtain

[

−m1a1ω
2 + (k1 + k3) a1 − k3a2

]

sinωt = 0
[

−m2a2ω
2 + (k2 + k3) a2 − k3a1

]

sinωt = 0.

Since this must be true for all t, the terms in brackets must be zero, which gives

a1

a2
=

−k3

m1ω2 − k1 − k3

a1

a2
=

m2ω
2 − k2 − k3

−k3
.

Since these must be equal

−k3

m1ω2 − k1 − k3
=
m2ω

2 − k2 − k3

−k3
,

which gives

ω4 +

(

k1 + k3

m1
+
k2 + k3

m2

)

ω2 +
k1k2 + k2k3 + k1k3

m1m2
= 0.

Note this is a quartic equation in ω but due to the absence of the odd powers of
ω it may be considered a quadratic equation in ω2. Although it is not necessary,
to simplify things a bit, assume

k1 = k2 = k (3.21)

m1 = m2 = m.

Using these values

a1

a2
=

−k3

mω2 − k − k3
(3.22)

a1

a2
=

mω2 − k − k3

−k3
,

and

ω4 +

(

2
k + k3

m

)

ω2 +
k (k + 2k3)

m2
= 0.

This has roots

ω2 =
k + k3

m
±
√

(

k + k3

m

)2

− k (k + 2k3)

m2
,

so

ω2 =
k

m
or

=
k + 2k3

m
.
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Figure 3.4. Mode one oscillations.

Substituting these values into Equation 3.22 gives

a1

a2
= 1

a1

a2
= −1,

for each of the two values of ω2 respectively.

The interpretation of these two pairs of values for ω2 and a1

a2
is straight-

forward. Considering

ω2 =
k

m
a1

a2
= 1

the two solutions are

x1(t) = a cos

√

k

m
t

x2(t) = a cos

√

k

m
t

where a1 = a2 = a. Thus, the two masses move with the same frequency, in
the same direction with the same magnitude of oscillation, as is schematically
illustrated in Figure 3.4.
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Figure 3.5. Mode two oscillations.

A similarly straight-forward analysis for the second solution shows that

x1(t) = a cos

√

k + 2k3

m
t

x2(t) = −a cos

√

k + 2k3

m
t,

where the masses move in opposite directions, as is illustrated in Figure 3.5.

Since the system is linear, the principle of superposition applies; hence, any
solution starting with zero initial velocities may be written as a combination of
the two modes of oscillation

x1(t) = a cos
√
kmt+ b cos

√

k + 2k3mt

x2(t) = a cos
√
kmt− b cos

√

k + 2k3mt.

A similarly straightforward analysis starting with assumed solutions of the
form

x1(t) = a1 cosωt+ c1 sinωt

x2(t) = a2 cosωt+ c2 sinωt

would yield the same solutions for ω2 and the same conditions on the relationship
between the coefficients b1 and b2. Since the same conditions apply for b1 and
b2, the same interpretation of the two modes applies for systems with initial
velocities.

Hence any solution, including solutions with nonzero initial velocities, may
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be represented as

x1(t) = a cos

√

k

m
t+ b cos

√

k + 2k3

m
t+ c sin

√

k

m
t+ d sin

√

k + 2k3

m
t

x2(t) = a cos

√

k

m
t− b cos

√

k + 2k3

m
t+ c sin

√

k

m
t− d sin

√

k + 2k3

m
t,

where the coefficients a, b, c and d depend upon the initial conditions.

Eigenvalue/Eigenvector Approach

Considering the equations of motion for the system illustrated in Figure 6.1,
which are given by Equation 3.20, if

ξ1 = x1

ξ2 = ẋ1

ξ3 = x2

ξ4 = ẋ2,

and the simplifications given in Equation 3.21 hold, then

ξ̇ =
d

dt









ξ1
ξ2
ξ3
ξ4









=









0 1 0 0

−k+k3

m
0 k3

m
0

0 0 0 1
k3

m
0 −k+k3

m
0

















ξ1
ξ2
ξ3
ξ4









= Aξ.

The eigenvalues of A are determined by the cofactor expansion

|A− λI | =

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 0

−k+k3

m
−λ k3

m
0

0 0 −λ 1
k3

m
0 −k+k3

m
−λ

∣

∣

∣

∣

∣

∣

∣

∣

= −λ

∣

∣

∣

∣

∣

∣

−λ k3

m
0

0 −λ 1

0 −k+k3

m
−λ

∣

∣

∣

∣

∣

∣

+ (−1)

∣

∣

∣

∣

∣

∣

−k+k3

m
k3

m
0

0 −λ 1
k3

m
−k+k3

m
−λ

∣

∣

∣

∣

∣

∣

= λ4 + 2
k + k3

m
λ2 +

(

k + k3

m

)2

−
(

k3

m

)2

= 0.
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Hence

λ1 = i

√

k

m

λ2 = −i
√

k

m

λ3 = i

√

k + 2k3

m

λ4 = −i
√

k + 2k3

m
.

Now computing the eigenvectors gives

(A− λ1I) ξ̂1 = 0 ⇐⇒

















−i
√

k
m

1 0 0 0

−k+k3

m
−i
√

k
m

k3

m
0 0

0 0 −i
√

k
m

1 0

k3

m
0 −k+k3

m
−i
√

k
m

0

















multiply first row by

−
k+k3

m

i
√

k
m

and add to sec-

ond row

=⇒















−i
√

k
m

1 0 0 0

0 i k3√
km

k3

m
0 0

0 0 −i
√

k
m

1 0

k3

m
0 −k+k3

m
−i
√

k
m

0















multiply first row by
k3
m

i
√

k
m

and add to fourth

row

=⇒

















−i
√

k
m

1 0 0 0

0 i

√

k3

km
k3

m
0 0

0 0 −i
√

k
m

1 0

0 −i
√

k3

km
−k+k3

m
−i
√

k
m

0

















add second row to fourth
row

=⇒

















−i
√

k
m

1 0 0 0

0 −i
√

k3

km
k3

m
0 0

0 0 −i
√

k
m

1 0

0 0 − k
m

−i
√

k
m

0

















multiply third row by

−
k
m

i
√

k
m

and add to fourth

row

=⇒















−i
√

k
m

1 0 0 0

0 −i
√

k3

km
k3

m
0 0

0 0 −i
√

k
m

1 0

0 0 0 0 0















.
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Thus,

ξ̂1 =













−i
√

k
m

−i
√

k
m













.

Similar computations show that

ξ̂2 =













i
√

k
m

i
√

k
m













ξ̂3 =













1

i

√

k+2k3

m

−1

−i
√

k+2k3

m













ξ̂4 =













1

−i
√

k+2k3

m

−1

i

√

k+2k3

m













.

The important point of this example is two fold:

1. the eigenvalues are exactly the same as the frequencies computed using
the classical method; and,

2. the eigenvectors reflect the relative magnitude conditions as well; i.e., in
particular

(a) the first and third components of ξ̂1 and ξ̂2 are identical, which is a
consequence of the fact that a1

a2
= 1 in the case where the frequency

is
√

k
m

; and,

(b) the first and third components of ξ̂3 and ξ̂4 have the same magnitude
but opposite sign, which is a consequence of the fact that a1

a2
= −1

in the case where the frequency is
√

k+2k3

m
.

3.9.2 Finite Element and Finite Difference Methods

3.10 Nonhomogeneous Systems of First Order

Equations

Now we consider how to solve systems of the type

ξ̇ = Aξ + g(t),

where

A ∈ R
n×n

ξ ∈ R
n

g(t) ∈ R
n,

or in detail
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d

dt











ξ1
ξ2
...
ξn











=











a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann





















ξ1
ξ2
...
ξn











+











g1(t)
g2(t)

...
gn(t)











. (3.23)

First consider a mechanical example that gives rise to equations of this na-
ture.

3.10.1 Example As an example of a type of system that is modeled by
such a set of equations, consider again the system illustrated in Figure 3.1,
but unlike before we will not assume that F (t) = 0. As before, if

ξ1 = x1

ξ2 = ẋ1

ξ3 = x2

ξ4 = ẋ2

then the equations of motion given in Equation 3.1 are equivalent to

d

dt









ξ1
ξ2
ξ3
ξ4









=









0 1 0 0

−k1+k2

m1
− b1+b2

m1

k2

m1

b2
m1

0 0 1 0
k2

m2

b2
m2

− k2

m2
− b2

m2

















ξ1
ξ2
ξ3
ξ4









+









0
0
0

F (t)
m2









.

The following three methods are appropriate for solving nonhomogeneous
systems of first order linear ordinary differential equations.

3.10.1 Diagonalization and Jordan Canonical Form

The fundamental idea underlying this approach is to convert the system of
coupled first order equations into decoupled equations. What this means math-
ematically will be apparent shortly, but the consequence of this approach is
unlike the system in Equation 3.23 where the entire system must be solved at
once, each equation (or row) can be solved individually, or one at a time. First
we need to investigate the concept of converting a matrix to diagonal form.

For a system of the form

ξ̇ = Aξ + g(t) (3.24)

we first consider the easier case where A has a full set of n linearly indepen-
dent eigenvectors, ξ̂1, . . . , ξ̂n, and define the matrix T as the matrix with the
eigenvectors of A as its columns, i.e.,

T =
[

ξ̂1 ξ̂2 ∗ · · · ξ̂n
]

.
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Since the definition of an eigenvector is

Aξ̂i = λiξ̂i

then
AT =

[

λ1ξ̂1 λ2ξ̂2 · · · λnξ̂n
]

.

Now, since we assumed that ξ̂1, ξ̂2, . . . , ξ̂n were linearly independent, then T
is invertible. Note that by definition

T−1T =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
) 0 · · · 1











.

Considering this equation column by column, we have

T−1ξ̂1 =











1
0
...
0











, T−1ξ̂2 =











0
1
...
0











, · · · T−1ξ̂n =











0
0
...
1











.

Also, since Aξ̂i = λiξ̂i

T−1Aξ̂1 = T−1λ1ξ̂1 = λiT
−1ξ̂1 = λ1











1
0
...
0











=











λ11
0
...
0











,

T−1Aξ̂2 = T−1λ2ξ̂2 = λiT
−1ξ̂2 = λ2











0
1
...
0











=











0
λ21
...
0











,

and so forth until

T−1Aξ̂n = T−1λnξ̂n = λiT
−1ξ̂n = λn











1
0
...
0











=











0
0
...
λn











.

Finally, putting it all together gives the important relation

T−1AT =















λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn















.
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Now, using this, again consider Equation 3.24 and let

ξ = Tψ

where the columns of T are the eigenvectors of A as before. Note that since T
is a constant matrix,

ξ̇ = T ψ̇.

Substituting into Equation 3.24 gives

T ψ̇ = ATψ + g(t),

or
ψ̇ = T−1ATψ + T−1g(t).

In detail, this looks like

d

dt















ψ1

ψ2

ψ3

...
ψn















=















λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn





























ψ1

ψ2

ψ3

...
ψn















+ T−1















g1(t)
g2(t)
g3(t)

...
gn(t)















(3.25)

=















λ1ψ1

λ2ψ2

λ3ψ3

...
λnψn















+ T−1















g1(t)
g2(t)
g3(t)

...
gn(t)















=















λ1ψ1

λ2ψ2

λ3ψ3

...
λnψn















+















h1(t)
h2(t)
h3(t)

...
hn(t)















where
h(t) = T−1g(t).

The significance of Equation 3.25 is that each of the ψi equations are decou-
pled and in the form of

ψ̇i = λiψ + hi(t).

Hence, each can be solved independently using the appropriate method from
Chapter 1. For example, using an integrating factor

d

dt
ψi − λiψi = hi(t)

e−λit

(

d

dt
ψi − λiψi

)

= e−λithi(t)

d

dt

(

e−λitψi

)

= e−λithi(t).
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Hence, integrating both sides gives

∫ t

0

d

dτ

(

e−λiτψi(τ)
)

=

∫ t

0

e−λiτhi(τ)dτ

e−λitψi(t) − ψi(0) =

∫ t

0

e−λiτhi(τ)dτ.

Hence

ψi(t) = eλit

∫ t

0

e−λiτh(τ)dτ + ψi(0)eλit,

if the initial condition is specified or

ψi(t) = eλit

∫ t

0

e−λiτh(τ)dτ + ceλit,

if the general solution is desired.
After solving all the ψi(t) equations, the solution for the ξ variables is simply

computed using the original equation

ξ = Tψ.

3.10.2 Example Determine the general solution to

d

dt





ξ1
ξ2
ξ3



 =





1 1 1
2 1 −1
−8 −5 −3









ξ1
ξ2
ξ3



+





0
0

cos t



 .

Computing the eigenvalues and eigenvectors gives

λ1 = −2

λ2 = −1

λ3 = 2

and

ξ̂1 =





−4
5
7



 , ξ̂2 =





−3
4
2



 , ξ̂3 =





0
−1
1



 .

Thus

T =





−4 −3 0
5 4 −1
7 2 1





and

T−1 =





1
2

1
4

1
4

−1 − 1
3 − 1

3
− 3

2 − 13
12 − 1

12



 .
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Computing T−1AT and T−1g(t) gives the following equations for ψ

d

dt





ψ1

ψ2

ψ3



 =





−2 0 0
0 −1 0
0 0 2









ψ1

ψ2

ψ3



+





1
4 cos t

− 1
3 cos t

− 1
12 cos t





or as individual equations

ψ̇1 = −2ψ1 +
1

4
cos t

ψ̇2 = −ψ2 −
1

3
cos t

ψ̇3 = 2ψ3 −
1

12
cos t.

The solutions to these equations are

ψ1 = e−2t

∫ t

0

e2t 1

4
cos τdτ + ψ1(0)e−2t

ψ2 = −e−t

∫ t

0

et 1

3
cos τdτ + ψ2(0)e−t

ψ3 = −e2t

∫ t

0

e−2t 1

12
cos τdτ + ψ3(0)e2t,

or

ψ1(t) = c1e
−2t +

1

10
cos t+

1

20
sin t

ψ2(t) = c2e
−t − 1

6
cos t− 1

6
sin t

ψ3(t) = c3e
2t +

1

30
cos t− 1

60
sin t.

The final solution is computed by determining

ξ = Tψ,

which is a bit too messy to write out in detail.

3.10.2 Undetermined Coefficients

Recall that the method of undetermined coefficients from Section 2.5 was based
upon the fact that derivatives of functions of the form

1. sinωt and cosωt,

2. eαt,

3. α0t
n + α1t

n−1 + α2t
n−2 + · · · + αn−1t+ αn, and
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4. products and sums of them,

are exactly the same set of functions. Thus when the nonhomogeneous term
contains function of this type, the particular solution of an ordinary differential
equation will be a general combination of the same type of functions. There
are two slight complications or variations that are necessary distinguish the ap-
proach for systems of first order equations from one scalar second order system.

General Form of Particular Solution

The first complication is that even though the nonhomogeneous term may ap-
pear in one component of the differential equation, the form of the solution must
have undetermined coefficients for all of the components. In a general functional
description, if the all the nonhomogeneous terms that appear in the vector g(t)
would require a particular solution of the form

xp(t) = af1(t) + bf2(t) + cf3(t) + · · ·

in the scalar (first or second order) case, then in the case of

ξ̇ = Aξ + g(t), ξ ∈ R
n,

then the assumed form of the solution will be

ξp(t) = af1(t) + bf2(t) + cf3(t) + · · ·

where a, b, c, . . . ∈ R
n, i.e., the coefficients are vectors. The following example

illustrates this point.

3.10.3 Example Find the general solution to

d

dt

[

ξ1
ξ2

]

=

[

2 1
0 3

][

ξ1
xi2

]

+

[

0
cos 4t

]

.

In the scalar case, the assumed form of the solution would simply be
xp(t) = a cos 4t+ b sin 4t, so for this problem we assume

ξp(t) = a cos 4t+ b sin 4t =

[

a1

a2

]

cos 4t+

[

b1
b2

]

sin 4t.

The rest of the procedure is exactly as before. Substitute the assumed
form of the particular solution into the differential equations and equate
the coefficients of different functions of t. Thus,

ξ̇p(t) = −4a sin 4t+ 4b cos 4t,

and substituting gives

[

−4a1 sin 4t+ 4b1 cos 4t
−4a2 sin 4t+ 4b2 cos 4t

]

=

[

2 1
0 3

] [

a1 cos 4t+ b1 sin 4t
a2 cos 4t+ b2 sin 4t

]

+

[

0
cos 4t

]

.
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Since this must be true for all time, the coefficients of the sine and cosine
terms in each equation must be equal. Thus, the coefficients are determined
by the following four equations:

sine term, first equation =⇒ −4a1 = 2b1 + b2

cosine term, first equation =⇒ 4b1 = 2a1 + a2

sine term, second equation =⇒ −4a2 = 3b2

sine term, first equation =⇒ 4b2 = 3a2 + 1.

Solving these gives

a1 = − 1

50

a2 = − 3

25

b1 = − 1

25

b2 =
4

25
.

Thus the particular solution is

ξp(t) =

[

− 1
50

− 3
25

]

cos 4t+

[

− 1
25

− 4
25

]

sin 4t.

To compute the general solution, the homogeneous solution, i.e., the solu-
tion to

ξ̇ = Aξ

is needed. A simple computation shows that the eigenvalues and eigenvec-
tors of A are

λ1 = 3, ξ̂1 =

[

1
1

]

, λ2 = 2, ξ̂2 =

[

1
0

]

.

Thus, the general solution is

ξ(t) = c1

[

1
1

]

e3t + c2

[

1
0

]

e2t +

[

− 1
50

− 3
25

]

cos 4t+

[

− 1
25

− 4
25

]

sin 4t.

In the previous example, note that the sine and cosine terms appear in both
components of the solution even though the nonhomogeneous term contains
cos 4t only in the second term. This is due to the fact that the equations are
coupled, and the effect of the nonhomogeneity is not limited to the line in which
it appears.
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Equivalent Homogeneous Solution and Nonhomogeneous Term

The second complication is when the nonhomogeneous term is the exponential of
an eigenvalue of the matrix A. When confronted with this problem in Chapter 2,
the approach was to multiply the assumed form of the particular solution by the
dependent variable. The approach for nonhomogeneous systems of first order
equations with equivalent homogeneous solutions and nonhomogeneous terms is
similar, but with a slight twist, as the following examples illustrate.

The first example is the second order scalar case, which is included to help
you recall the procedure from Chapter 2.

3.10.4 Example (Review problem from Chapter 2) Determine the gen-
eral solution to

ẍ+ 4x = cos 2t. (3.26)

Assuming a homogeneous solution of the form

xh(t) = eλt

and substituting gives

λ2 + 4 = 0 =⇒ λ = ±2i.

For the particular solution, we are first inclined to assume a solution of the
form

xp(t) = a cos 2t+ b sin 2t.

One that is observant and experienced in dealing with undetermined coeffi-
cients will immediately recognize that this will not work since it is actually
a homogeneous solution. When xp(t) of this form is substituted into Equa-
tion 3.26 it will disappear leaving nothing to equate to the nonhomogeneous
term since it is actually a solution of the homogeneous equation. In detail,

ẍp(t) = −4a cos 2t− 4b sin 2t,

and substituting gives

−4a cos 2t− 4b sin 2t+ 4 (a cos 2t+ b sin 2t) = cos 2t

0 = cos 2t.

The 0 on the left hand side of the previous equation is guaranteed to occur
since xp(t) happens to satisfy

ẍ+ 4x = 0.

Recall, that the correct form to assume for the particular solution in this
case would be

xp(t) = t (a cos 2t+ b sin 2t) .

Then,
ẍp(t) = −4 ((at− b) cos 2t+ (a+ bt) sin 2t)
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and substituting and equating coefficients gives

−4 ((at− b) cos 2t+ (a+ bt) sin 2t) +

4t (a cos 2t+ b sin 2t) = cos 2t.

Since this must be true for all t, the coefficients of sin 2t, t sin 2t, cos 2t and
t cos 2t must be equal. Thus

−4a = 0

−4b+ 4b = 0

4b = 1

−4a+ 4a = 0

respectively. From this we obtain

a = 0

b =
1

4
,

and hence

xp(t) =
1

4
t sin 2t.

The analogous situation for a system of first order equations is when the
nonhomogeneous term includes the exponential of one of the eigenvalues of the
matrix A.

3.10.5 Example (Wrong approach number 1) Determine the general
solution to

d

dt

[

ξ1
ξ2

]

=

[

2 1
0 3

] [

ξ1
ξ2

]

+

[

0
e3t

]

.

An easy computation shows that the eigenvalues and corresponding eigen-
vectors of A are

λ1 = 2 ξ̂1 =

[

1
0

]

and λ2 = 3 ξ̂2 =

[

1
1

]

.

Since the nonhomogeneous term contains e3t which is precisely the expo-
nential of an eigenvalue of A, we should expect to run into trouble equating
coefficients. Trying it anyway gives

ξp(t) = ae3t =

[

a1

a2

]

e3t.

Thus
ξ̇p(t) = 3ae3t,

and substituting into the differential equation gives

3

[

a1

a2

]

e3t =

[

2 1
0 3

][

a1

a2

]

e3t +

[

0
e3t

]

.
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Equating coefficients of e3t in each equation gives

3a1 = 2a1 + a2

3a2 = 3a2 + 1.

Since there is no value for a2 that can satisfy the second equation, there is
no solution, and hence, no way to determine the undetermined coefficients.
It is left as a homework problem to see that exactly the same thing happens
if the eigenvalue is purely imaginary (complex) and the nonhomogeneous
term contains a sine or cosine at the same frequency.

Since the correct approach in Chapter 2 was to simply multiply the assumed
form of the solution by the independent variable, t, one may assume that the
same approach works in this case as well. Unfortunately, as the following ex-
ample illustrates, it does not work.

3.10.6 Example (Wrong approach number 2) Again consider

d

dt

[

ξ1
ξ2

]

=

[

2 1
0 3

] [

ξ1
ξ2

]

+

[

0
e3t

]

.

Since the nonhomogeneous term contains e3t which is precisely the expo-
nential of an eigenvalue of A, we should expect to run into trouble equating
coefficients. Thus assume

ξp(t) = ate3t =

[

a1

a2

]

te3t.

Thus

ξ̇p(t) = 3ate3t + ae3t

and substituting into the differential equation gives

(

3t

[

a1

a2

]

+

[

a1

a2

])

e3t =

[

2 1
0 3

] [

a1

a2

]

te3t +

[

0
e3t

]

.

Equating coefficients of e3t and te3t in each equation gives

a1 = 0

3a1 = 2a1 + a2

a2 = 1

3a2 = 3a2.

Again, there is no solution.

The following example elaborates upon the reason why the simple approach
of only multiplying by the independent variable t does not work.
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3.10.7 Example Determine the general solution to

d

dt

[

ξ1
ξ2

]

=

[

3 0
0 2

] [

ξ1
ξ2

]

+

[

e2t

e2t

]

.

These equations are decoupled, so we can immediately see (or compute)

ξ1h
= e3t

ξ2h
= e2t.

Since the homogeneous solution for ξ2 is the same as the nonhomogeneous
term, clearly assuming e2t will be problematic. Thus, we need a term of the
form te2t in the assumed form of the particular solution for ξ3. However,
a term of the form e2t in the particular solution is exactly what is needed
for the first line since the homogeneous solution for ξ1 contains e3t, not e2t.
Thus, assuming

ξp(t) = ae2t

will not work because of the ξ2 component, and

ξp(t) = ate2t

will not work because of the ξ1 component. A solution containing both terms
is necessary.

Unfortunately, there is still one final twist to this whole affair. Since it is
necessary to assume a particular solution that is the sum of the independent
variable, t times the homogeneous solution and the homogeneous solution itself,
there will not be a unique particular solution. This is because of the the term in
the homogeneous solution that is not multiplied by the independent variable in
the assumed form of the particular solution can be combined with the homoge-
neous solution in an arbitrary manner. This (along with the correct approach)
is illustrated by the following example.

3.10.8 Example (Right approach) Again consider

d

dt

[

ξ1
ξ2

]

=

[

2 1
0 3

] [

ξ1
ξ2

]

+

[

0
e3t

]

.

Observing that λ = 3 is an eigenvalue of A we assume

ξp(t) = ate3t + be3t =

[

a1

a2

]

te3t +

[

b1
b2

]

e3t.

Thus
ξ̇p(t) = 3ate3t + ae3t + 3be3t

and substituting into the differential equation gives
(

3t

[

a1

a2

]

+

[

a1

a2

]

+ 3

[

b1
b2

])

e3t =

[

2 1
0 3

]([

a1

a2

]

t+

[

b1
b2

])

e3t +

[

0
e3t

]

.
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Equating coefficients of e3t and te3t in each equation gives

a1 + 3b1 = 2b1 + b2

3a1 = 2a1 + a2

a2 + 3b2 = 3b2 + 1

3a2 = 3a2.

Simplifying these equations gives only three independent equations

a1 + b1 = b2

a1 = a2

a1 = 1.

The reason there are less than four equations, and hence no unique solution,
is because the vector b in the assumed form of the solution must be an
eigenvector of A and hence can be combined in any linear way with one of
the homogeneous solutions. One solution to the above three equations is

a1 = 1

a2 = 1

b1 = 0

b2 = 1,

and hence

ξp(t) =

[

1
1

]

te3t +

[

0
1

]

e3t. (3.27)

This particular solution is not unique. Indeed,

a1 = 1

a2 = 1

b1 = −1

b2 = 0,

also work giving

ξp(t) =

[

1
1

]

te3t +

[

−1
0

]

e3t. (3.28)

The reason both particular solutions work is that when they are combined
with the homogeneous solution, they yield the same solution. In particular,
from Example 3.10.5 we can write the homogeneous solution as

ξh(t) = c1

[

1
0

]

e2t + c2

[

1
1

]

e3t.

Then the general solution using the particular solution from Equation 3.27
gives

ξ(t) = c1

[

1
0

]

e2t + c2

[

1
1

]

e3t +

[

1
1

]

te3t +

[

0
1

]

e3t,



58 CHAPTER 3. MULTIPLE-DEGREE OF FREEDOM SYSTEMS

and the general solution using the particular solution from Equation 3.28
gives

ξ(t) = ĉ1

[

1
0

]

e2t + ĉ2

[

1
1

]

e3t +

[

1
1

]

te3t +

[

−1
0

]

e3t.

For c2 from the first equation and ĉ2 from the second equation, if ĉ2 = c2+1
the equations are identical.

3.10.3 Undetermined Coefficients of Systems of Second

Order Equations

3.10.4 Variation of Parameters

With all the complications involved in the method of undetermined coefficients,
one may be hesitant to even venture into the realm of variation of parameters
since, at least in Chapter 2 the derivation was rather complicated. Thankfully,
in the case of nonhomogeneous systems of first order equations, variation of
parameters is even more straightforward than in the scalar second order case.

Given

ξ̇ = Aξ + g(t) (3.29)

where
i really want to reference equation 3.29.

A ∈ R
n×n

ξ ∈ R
n

g(t) ∈ R
n

assume that ξ1h
, ξ2h

, . . . , ξnh
are n linearly independent homogeneous solutions

to Equation 3.29, i.e., they satisfy

ξ̇ih
= Aξih

.

Because it is useful subsequently, we first construct and define a matrix, Ξ(t)
where the columns of Ξ(t) are the homogeneous solutions, ξih

(t).

Definition 3.10.9 (Fundamental Matrix Solution) Let ξ1h
, ξ2h

, . . . , ξnh
sat-

isfy

ξ̇ih
= Aξih

.

The fundamental matrix solution is the matrix

Ξ(t) =
[

ξ1h
(t) ξ2h

(t) · · · ξnh
(t)

]

,

i.e., the columns of Ξ(t) are the homogeneous solutions.
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3.10.10 Example Consider again the system from Example 3.7.15. In
that example we computed the general solution to ξ̇ = Aξ where

A =









2 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3









.

Skipping the details that were presented in Example 3.7.15, the general
solution was

ξ(t) = c1ξ̂1e
λ1t + c2ξ̂2e

λ1t + c3ξ̂
1
3e

λ3t + c4

(

ξ̂23 + tξ̂13

)

eλ3t

= c1









1
0
0
0









e2t + c2









0
1
0
0









e2t + c3









0
0
1
0









e3t +

c4

















0
0
0
1









+ t









0
0
1
0

















e3t.

Since each term that is multiplied by a constant, ci is a homogeneous solu-
tion simply construct a matrix with each one as a column to construct the
fundamental matrix solution

Ξ(t) =
[

ξ̂1e
λ1t ξ̂2e

λ2t ξ̂13e
λ3t

(

ξ̂23 + tξ̂13

)

eλ3t
]

=

















1
0
0
0









e2t









0
1
0
0









e2t









0
0
1
0









e3t

















0
0
0
1









+ t









0
0
1
0

















e3t









=









e2t 0 0 0
0 e2t 0 0
0 0 e3t te3t

0 0 0 e3t









.

The fundamental matrix solution has one important property that will be
used in the derivation of the variation of parameters solution; namely, the whole
matrix satisfies the homogeneous equation. In other words, if Ξ(t) is the funda-
mental matrix solution to

ξ̇ = Aξ

then

Ξ̇ = AΞ.

This is true since each column of Ξ(t) is a homogeneous solution and is illustrated
by the following example.
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3.10.11 Example From Example 3.10.10 we have

Ξ(t) =









e2t 0 0 0
0 e2t 0 0
0 0 e3t te3t

0 0 0 e3t









so

Ξ̇(t) =









2e2t 0 0 0
0 2e2t 0 0
0 0 3e3t 3te3t + e3t

0 0 0 3e3t









=









2 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3

















e2t 0 0 0
0 e2t 0 0
0 0 e3t te3t

0 0 0 e3t









.

Thus Ξ̇ = AΞ.

Similar to the approach for second order equations, the approach to find the
particular solution for a nonhomogeneous system of first order equations is to
assume that the particular solution is of the form of

ξp(t) = Ξ(t)u(t)

where u(t) is a vector of unknown functions. To determine u(t), simply substi-
tute into Equation 3.29. First note that (dropping the explicit dependence on
t)

ξ̇p = Ξ̇u+ Ξu̇.

Substituting into Equation 3.29 gives

Ξ̇u+ Ξu̇ = AΞu+ g.

Since
Ξ̇ = AΞ =⇒ Ξ̇u = AΞu

so
Ξu̇ = g.

Since Ξ contains n linearly independent solutions, it is invertible and hence

u̇ = Ξ−1g =⇒ u(t) =

∫ t

t0

Ξ−1(τ)g(τ)dτ.

Substituting into the assumed form of the particular solution gives a complete
expression for the particular solution as

ξp(t) = Ξ

∫ t

t0

Ξ−1(τ)g(τ)dτ.
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Note that to even compute the particular solution we need the fundamental
matrix which contains a full set of homogeneous solutions. Since any linear
combination of the homogeneous solutions can be expressed as

c1ξ1h
+ c2ξ2h

+ · · · + cnξnh
= Ξ(t)c

where

c =











c1
c2
...
cn











the general solution to Equation 3.29 is

ξ(t) = Ξ(t)c + Ξ(t)

∫ t

t0

Ξ−1(τ)g(τ)dτ. (3.30)

Finally, if the initial conditions, ξ(t0) are specified, then

ξ(t0) = Ξ(t0)c

since the integral with the same upper and lower limits is zero. Hence

c = Ξ−1(0)ξ(t0)

and substituting into the general solution gives the entire answer as

ξ(t) = Ξ(t)Ξ−1(t0)ξ(t0) + Ξ(t)

∫ t

t0

Ξ−1(τ)g(τ)dτ. (3.31)

An example illustrates the straightforward application of this method.

3.10.12 Example Solve

d

dt

[

ξ1
ξ2

]

=

[

−3 1
1 −3

][

ξ1
ξ2

]

+

[

e−4t

0

]

.

A simple computation determines the eigenvalues and eigenvectors for the
matrix as

λ1 = −4 ξ̂1 =

[

−1
1

]

λ2 = −2 ξ̂2 =

[

1
1

]

,

thus

Ξ(t) =

[

−e−4t e−2t

e−4t e−2t

]

.

A simple computation determines that

Ξ−1(t) =
1

2

[

−e4t e4t

e2t e2t

]

,
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and

Ξ−1(t)g(t) =

[

− 1
2

1
2e

−2t

]

.

Assuming that t0 = 0,

∫ t

0

Ξ−1(τ)g(τ)dτ =

∫ t

0

[

− 1
2

1
2e

−2τ

]

dτ

=

[

− 1
2τ

1
4

(

1 − e−2t
)

]

.

Then

Ξ(t)

∫ t

0

Ξ−1(τ)g(τ)dτ =

[

1
4

(

e−2t + 2te−4t − e−4t
)

1
4

(

e−2t − 2te−4t − e−4t
)

]

.

So finally we have

ξ(t) = Ξ(t)c+ Ξ(t)

∫ t

t0

Ξ−1(τ)g(τ)dτ

= c1

[

−e−4t

e−4t

]

+ c2

[

e−2t

e−2t

]

+

[

1
4

(

e−2t + 2te−4t − e−4t
)

1
4

(

e−2t − 2te−4t − e−4t
)

]

.

3.11 Applications of Nonhomogeneous Systems

of Equations



Chapter 4

Lagrangian Dynamics

4.1 Introduction

This chapter deals with the subject of Lagrangian dynamics, and in the over-
all context of this text deals with the problem of determining the differential
equations that describe a particular system, as opposed to solving or analyzing
differential equations. Thus, in a sense, it is perhaps more appropriately the
starting point of the subject matter of this text. However, it is included at this
point, later in the text, because the differential equations describing a mechan-
ical system that are most conveniently obtained using Lagrange’s equations are
generally nonlinear and second order and hence naturally are considered with
the specific tools for nonlinear systems and higher order systems.

The essential feature of Lagrange’s equations, in contrast to a Newtonian
(F = ma) approach, is that it is allows great flexibility in specifying which
coordinates are used to describe the system.

4.2 Motivational Example

Consider the planar double pendulum illustrated in Figure 4.1. In this section
the equations of motion for the system are derived using a Newtonian approach.
After the derivation of Lagrange’s equations in Section ??, the problem will be
revisited, with the hopefully obvious feature that the Lagrangian approach is
much less work.

4.3 Derivation of Lagrange’s Equations
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PSfrag replacements θ1
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Figure 4.1. Double pendulum system (no gravity).



Chapter 5

Partial Differential

Equations
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Chapter 6

Transform Methods

This chapter deals primarily with the use of Laplace tranforms for solving linear
ordinary differential equations and the application thereof to the analysis and
design of feedback control systems. First a few details from complex variable
theory are reviewed.

6.1 Review of Complex Variable Theory

Recall that a complex number may be represented in either Cartesian or polar
form, i.e.,

z = x+ iy

= (x, y)

= (r, θ)

where

r =
√

x2 + y2

θ = arctan2 (y, x)

x = r cos θ

y = r sin θ.

Note that in Cartesian form

z1 + z2 = (x1 + iy1) + (x2 + iy2)

= (x1 + x2) + i (y1 + y2)

and

z1z2 = (x1 + iy1) (x2 + iy2)

= x1x2 + x1iy2 + iy1x2 + iy1iy2

= (x1x2 − y1y2) + i (x1y2 + y1x2)
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and in polar form

z1 + z2 = r1 (cos θ1 + i sin θ1) + r2 (cos θ2 + i sin θ2)

= (r1 cos θ1 + r2 cos θ2) + i (r1 sin θ1 + r2 sin θ2)

and

z1z2 = r1 (cos θ1 + i sin θ1) r2 (cos θ2 + i sin θ2)

= r1r2 [(cos θ1 cos θ2 − sin θ1 sin θ2) + i (cos θ1 sin θ2 + sin θ1 cos θ2)]

= r1r2 (cos (θ1 + θ2) + i sin (θ1 + θ2)) .

So, that in general, it is more convenient to add and subtract complex numbers
in Cartesian form and to multiply or divide them in polar form. Note in par-
ticular, in polar form when multiplying complex numbers, it is necessary only
to multiply the magnitudes and add the arguments.

6.2 The Laplace Transform

Consider the following definition.

Definition 6.2.1 (Laplace Transform) Let f(t) be a function and s ∈ C.
Define the Laplace transform of f(t), denoted by L{f(t)} by

L{f(t)} = lim
a→∞

∫ a

0

f(t)estdt =

∫ ∞

0

f(t)estdt.

Remark 6.2.2 It is somewhat beyond the scope of this text, but obvserve that
since the integral in the definition of the Laplace transform is an indefinite
integral, convergence is not at all guaranteed for all values of s.

6.3 The Fourier Transform

6.4 Using Laplace Transforms to Solve Linear

Ordinary Differential Equations

6.5 The Transfer Function

This section introduces the transfer function, which is of great engineering im-
portance due to the manner in which it concisely represents the relationship
between the input and output of a system.

6.5.1 Example Consider, again, the example from Section 3.2, which is
reproduced in Figure 6.1 for convenience. In this problem consider the
input to the system to be the force, f(t). In controls problems considered
subsequently, the task will be to pick f(t) so that the response of the output
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Figure 6.1. Two degree of freedom mass-spring-damper sys-
tem.

of the system has some desirbale characteristic. Consider the output to be
the position of mass 1, x1(t). The purpose of this example is to illustrate
that using Laplace transforms provides a more convenient representation of
the relationship between f(t) and x1(t) than does the system of ordinary
differential equations that we obtained and solved before.

From Section 3.2

m1ẍ1 + (b1 + b2) ẋ1 − b2ẋ2 + (k1 + k2)x1 − k2x2 = 0 (6.1)

m2ẍ2 − b2ẋ1 + b2ẋ2 − k2x1 + k2x2 = f(t),

and assume for simplicity that

x1(0) = 0

ẋ1(0) = 0

x2(0) = 0

ẋ2(0) = 0.

Previously, at this point our goal was to solve these equations. The
controls problem considered in subsequent sections of this chapter is not
simply to solve the equations, but to pick f(t) so that the solution behaves
in a particular manner.

Without any motivation other than to observe that this example is in
the “transform methods” chapter Laplace transforming both equations in
Equation 6.1, gives

m1s
2X1(s) + (b1 + b2) sX1(s) − b2sX2(s) + (k1 + k2)X1(s) − k2X2(s) = 0

m2s
2X2(s) − b2sX1(s) + b2sX2(s) − k2X1(s) + k2X2(s) = F (s)

or collecting terms

X1(s)
(

m1s
2 + (b1 + b2) s+ (k1 + k2)

)

−X2(s) (b2s+ k2) = 0

−X1(s) (b2s+ k2) +X2(s)
(

m2s
2 + b2s+ k2

)

= F (s).
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Solving the first equation for X2(s) gives

X2(s) =
m1s

2 + (b1 + b2) + (k1 + k2)

b2s+ k2
X1(s)

and substituting into the second equation gives

−X1(s) (b2s+ k2)+
m1s

2 + (b1 + b2) + (k1 + k2)

b2s+ k2
X1(s)

(

m2s
2 + b2s+ k2

)

= F (s).

Solving for X1(s) and not making much attempt to simplify things gives

X1(s) =
(b2s+ k2)

(m1s2 + (b1 + b2) s+ (k1 + k2)) (m2s2 + b2s+ k2) − (b2s+ k2)
2F (s).

(6.2)
Let

G(s) =
(b2s+ k2)

(m1s2 + (b1 + b2) s+ (k1 + k2)) (m2s2 + b2s+ k2) − (b2s+ k2)
2

so that

X1(s) = G(s)F (s).

As will be defined subsequently, the term that relates the input, F (s) to the
output, X1(s) is called the transfer function from f(t) to x1(t).

Remark 6.5.2 1. Note that given the force, f(t) we can first find F (s), then
X1(s) and finally x1(t) directly from Equation 6.2 without having to screw
around with x2(t) or X2(s) since X2(s) does not explicity appear in the
equation. It is still represented in the equation, though, in the polynomials
in s.

2. If we did not Laplace transform the equations in Equation 6.1, there is
no way to reduce the system to one equation like we were able to do by
Laplace transforming.

3. Note that the transfer function, H(s) is a function only of the system
itself, i.e., the m’s, b’s and k’s, so regardless of the nature of the input,
f(t), the transfer function is a complete representation of the relationship
between the input and output.

Definition 6.5.3 (Transfer Function) The transfer function of a linear, time
invariant system of differential equations is the ratio of the Laplace transform of

the output of the system, Y (s) to the input of the system, R(s), i.e., G(s) = Y (s)
R(s) .

An often unspecified bit of information that accompanies the definition of a
transfer function is that if the initial conditions are not explicitly specified, they
are assumed to be zero.
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Figure 6.2. Basic electrical components.

6.5.1 Review of Kirchoff’s Laws and DC Motor Laws

Since electic motors are often used to apply torques and, hence, indirectly, forces,
to mechanical systems, we must review simple means to model electic motors
as well as the electic circuits attached to them. First we will consider Kirchoff’s
laws and then motor modeling.

Definition 6.5.4 (Kirchoff’s Laws)

1. Kirchoff’s current law (KCL): the sum of currents leaving a node in an
electic circuit is equal to the sum of currents entering the node.

2. Kirchoff’s voltage law (KVL): the sum of all volatages around any closed
path in an electic circuit is equal to zero.

The basic elements and their governing equations of a circuit we consider
are the resistor, capacitor and inductor. The schematic graphic as well as the
equations describing them are illustrated in Figure ??.

A simple application of Kirchoff’s laws is illustrated by the following exam-
ple.

6.5.5 Example Determine the transfer function relating the input voltage,
vi(t) to the output voltage, vo(t) in the circuit illustrated in Figure 6.3.

Referring to Figure 6.4, clearly, Vo(s) = R2I(s), if we denote the current
through R2 by i(t) and its Laplace transform by I(s). This is either by
simple inspection, or by using KVL around the loop through R2 and across
the output voltage, Vo(s) indicated by the arrow and labeled by A. Also,
considering the closed loop with R1 and the capacitor, if vc(t) denotes the
voltage across the capacitor and vR1

denotes the voltage across R1, then
KVL gives

vc(t) = vR1
(t). (6.3)

Also, considering the current, i(t), indicated by the arrow and using
KCL at the node labeled by B

i(t) = C
dvc(t)

dt
+
vR1

(t)

R1
(6.4)
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Figure 6.3. Electrical circuit for Example 6.5.5.

using the governing equations for a capacitor and resistor, respectively.
Laplace transforming Equations 6.3 and 6.4 gives

Vo(s) = R2I(s) (6.5)

I(s) = CsVc(s) +
VR1

(s)

R1
= CsVc(s) +

Vc(s)

R1
(6.6)

Finally, using KVL around the loop indiacted by E,

Vi(s) = Vc(s) + Vo(s)

or

Vc(s) = Vi(s) − Vo(s). (6.7)

Solving equation 6.5 for I(s) and substituting into equation 6.6, and also
substituting the expression for Vc(s) in equation 6.7 into equation 6.6 gives

Vo(s)

R2
= Cs (Vi(s) − Vo(s)) +

Vi(s) − Vo(s)

R1
.

Solving for the transfer function gives

Vo(s)

Vi(s)
=

R1R2Cs+R2

R1R2Cs+R1 +R2
.

Obvserve that the approach to determining transfer functions is pretty
straightfoward: Laplace transform all the governing equations and there
should be enough equations and unknown variables to solve for the ratio of
the output to the input.
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Figure 6.4. Electrical circuit for Example 6.5.5.

6.6 Basic Stability Analysis

6.7 Second Order System Response

6.8 The Root Locus Design Method

6.9 Frequency Response Analysis and Design
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Chapter 7

Classical Control Theory

With the exception of time delay, all the transfer functions consider thus far
have been ratios of polynomials in the variable s. Henceforth, we will assume
that any transfer function is a rational function, i.e., it is a ratio of polynomials
in s and that the order of the polynomial in the denominator is greater than the what about pole zero cance-

lation?numerator. This assumption regarding the relative degree of the denominator
and numerator is generally true for all physical engineering systems and will be
a basic assumption throughout the rest of this chapter. elaborate on relative degree

Since a transfer function is a ratio of polynomials in s, it is convenient to
consider it in a factored form, i.e.,

Y (s)

R(s)
= a

∏m

i=1 (s− zi)
∏n

j=1 (s− pj)
.

The values s = zi are called the zeros of the transfer function and the values
s = pj are called the poles. Since s is the independent variable in a transfer
function, clearly values zi and pj completely determine the transfer function.

7.0.1 Example Consider a mass-spring-damper system with a force of r(t)
applied to the mass. The equation of motion is

mẍ+ bẋ+ kx = r(t)

and the transfer function is

X(s)

R(s)
=

1

ms2 + bs+ k
,

or in factored form

X(s)

R(s)
=

1

m

1
(

s+ b
2m

+ i
2m

√
4km− b2

) (

s+ b
2m

− i
2m

√
4km− b2

) .

So for this system, there are no zeros, one pole is located at s = − b
2m

−
i

2m

√
b2 − 4km and the other pole is located at s = − b

m
+ i

2m

√
b2 − 4km.
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Note that if b2 > 4km then the two poles are real, if b2 < 4km the poles
are a complex conjugate pair and if b2 = 4km they are the same, i.e., the
are repeated.

Note that if the two poles are real, then the step response of the system
will be of the form of two exponentials. If the poles are a complex conjugate
pair, then they will contain sinusoidal terms.

X(s)

R(s)
=

1

m

1
(

s+ b
2m

)2
+ 4km−b2

4m2

.

The basis for the so-called “root locus” design technique in classical control
is an attempt to manipulate the location of poles of a transfer function to affect
the desired response of the system. In order to have a basis for this approach,
however, the basic response of a system as a function of pole location must be
thoroughly understood.

7.1 Step Response vs. Pole Location

The most basic controller design methodologies, particularly the root locus
method, are based upon knowledge of a system’s response to various inputs
based upon the location of the transfer function poles and zeros. This section
describes the qualitative behavior of the step response of transfer functions as a
function of the location of the poles of the transfer function. The location of the
zeros will be treated as a modification of the response versus pole location and
will be outlined in Section 7.3. The approach taken is fundamentally geometric,
which, when the complete context of the problem is understood, is indeed a nat-
ural approach to the problem. The following sections merely provide the details
to develop a catalog of responses for various transfer function pole locations.

7.1.1 One real pole

Consider a transfer function of the form

Y (s)

R(s)
=

−p
s− p

. (7.1)

Note that this transfer function has one pole located at s = p. Consider the
case when the input is a step input, i.e., R(s) = 1

s
. A partial fraction expansion

gives

Y (s) =
1

s
− 1

s− p
.

The reason for the −p numerator in the transfer function is to make the partial
fraction numerators both equal to 1. Even if the numerator were not −p, the
following discussion would still be qualitatively correct. From Table ?? the
solution is

y(t) = 1 − ept.
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Figure 7.1. Pole locations for
Equation 7.1 for p = −1,−3
and −5.

Figure 7.2. Step response for
Equation 7.1 for p = −1,−3
and −5.
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Figure 7.3. Pole locations for
Equation 7.1 for p = 1, 3 and
5.

Figure 7.4. Step response for
Equation 7.1 for p = 1, 3 and
5.

Figures 7.1 and 7.3 illustrate the pole locations for the pole values p = −5,−3,−1, 1, 3
and 5. Figures 7.2 and 7.4 illustrate the corresponding solution, y(t) for the same
pole values p = −5,−3,−1, 1, 3 and 5. Observe that

• If the pole is to the left of the imaginary axis, the step response is stable.
If the pole is to the right of the imaginary axis, the response is unstable.

• The farther away from the imaginary axis the pole is, the faster the re-
sponse is.

7.1.2 Purely imaginary complex conjugate pair

Now consider
Y (s)

R(s)
=

a2

s2 + a2
. (7.2)
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Figure 7.5. Pole locations for
Equation 7.2 for a = ±1,±3
and ±5.

Figure 7.6. Step response for
Equation 7.1 for a = ±1,±3
and ±5.

Note that this transfer function has two poles located at s = ±ai, and again
consider the step response, i.e., R(s) = 1

s
. Partial fractions gives

Y (s) =
1

s
+

1

s2 + a2
,

where again the numerator in the transfer function was picked solely for compu-
tational convenience. Again, the following discussion would still be qualitatively
true with a different numerator. From Table ?? the solution is

y(t) = 1 + sinat.

Figures ?? and ?? illustrate the pole locations and step response for the pole
values p = ±1,±3 and ±5. Observe that all the solutions are non-decaying
sinusoidal solutions. As the imaginary pair of poles moves farther away from
the real axis, the frequency of the response increases.

Figures ?? and ?? illustrate the pole locations for the pole values p = ±1,±3
and ±5. Observe that all the solutions are non-decaying sinusoidal solutions. As
the imaginary pair of poles moves farther away from the real axis, the frequency
of the response increases.

7.1.3 Complex conjugate poles

Now consider a transfer function of the form

Y (s)

R(s)
=

a2 + b2

(s− a)
2
+ b2

, (7.3)

which has two poles located at s = a ± ib. Again the numerator was picked
solely for convenience and the following discussion is qualitatively true for other
numerator values as well. The response is

y(t) = 1 − eat cos bt+
a

b
eat sin bt,
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Figure 7.7. Pole locations for
Equation 7.3 for a = −1,−3
and −5 and b = ±1.

Figure 7.8. Step response for
Equation ?? for a = −1,−3
and −5 and b = ±1.

and the poles and step response are plotted for a = −1,−3 and −5 and b = ±4
in Figures 7.7 and 7.8. The poles and step response are plotted for a = 1 and
3 and b = ±4 in Figures ?? and ??. The poles and step response are plotted
for b = ±1,±3 and ±5 and a = −1 in Figures ?? and ??. The poles and step
response are plotted for b = ±1,±3 and ±5 and a = 1 in Figures ?? and ??.

7.1.4 Combination of poles

7.2 Time Domain Response of a Second Order

System

As has already been studied extensively in Chapter ?? second order, constant
coefficient, linear homogeneous systems have a solution that is relatively easy to
characterize. The most basic approach to feedback control design is to attempt
to design a controller so that the step response of a system with feedback control
has desirable features similar to that of a second order system. First, we need
to characterize the response of a second order system.

7.2.1 Response vs. pole location for a complex conjugate

poles

Consider the differential equation

mẍ(t) + bẋ(t) + kx(t) = r(t)

where b2 < 4km. The transfer function from r(t) to x(t) is

X(s)

R(s)
=

1

ms2 + bs+ k
=

(

1

m

)

(

1
(

s+ b
2m

)2
+ 4km−b2

4m2

)
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and the poles are at s = − b
2m

± i
2m

√
4km− b2. Assuming that r(t) is a unit

step then R(s) = 1
s
, which gives

X(s) =

(

1

m

)

(

1
(

s+ b
2m

)2
+ 4km−b2

4m2

)

(

1

s

)

.

Partial fractions gives

X(s) =
A

s
+

Bs+ C

ms2 + bs+ k
=

(

1

s

)(

1

ms2 + bs+ k

)

which gives

A =
1

k

B = −m
k

C = − b

k

so

X(s) =
1
k

s
−

m
k
s+ b

k

ms2 + bs+ k

=
1
k

s
−

1
k
s+ b

mk
(

s+ b
2m

)2
+ 4km−b2

4m2

=
1

k

(

1

s
− s+ b

m
(

s+ b
2m

)2
+ 4km−b2

4m2

)

=
1

k

(

1

s
− s+ b

2m
(

s+ b
2m

)2
+ 4km−b2

4m2

−
b

2m
(

s+ b
2m

)2
+ 4km−b2

4m2

)

=
1

k





1

s
− s+ b

2m
(

s+ b
2m

)2
+ 4km−b2

4m2

−
(

√

b2

4km− b2

)

√

4km−b2

4m2

(

s+ b
2m

)2
+ 4km−b2

4m2



 .

Thus, from the Table ??

x(t) =
1

k

[

1 − e−
b

2m
t

(

cos

(√
4km− b2

2m
t

)

+

√

b2

4km− b2
sin

(√
4km− b2

2m
t

))]

.

If we denote

ωn =

√

k

m

ζ =
b

2mωn

ωd = ωn

√

1 − ζ2
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Figure 7.9. Second order step response.

then

x(t) =
1

k

[

1 + e−ζωnt

(

cosωdt+
ζ

√

1 − ζ2
sinωdt

)]

.

7.2.2 Time Domain Specifications

Consider the typical second order step response illustrated in Figure 7.9. We
will consider four time domain specifications: percent overshoot, rise time, peak
time and settling time.

Define

• he maximum overshoot, Ox is the maximum value that x(t) obtains minus
the steady state value, xss = limt→∞ x(t) and the percentage overshoot is
given by

Mp =
Ox − xss

xss

;

• the peak time is the (first) time at which x(t) = Ox;

• the rise time is the time at which x(t) first is equal to xss; and,

• the S % settling time is the first time for which |x(t) − xss| < S
100xss.
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7.2.3 Time domain specifications and pole location geom-

etry

Consider the complex conjugate pairs of poles illustrated in Figure 7.10 and
recall that the poles are located at s = − b

2m
± 1

2m

√
4km− b2. Note that from

some simple algebra and geometry

•
∣

∣s2
∣

∣ = b2

4m2 + 4km−b2

4m2 = k
m

= ω2
n;

• sin θ =
−b
2m

ωn
= ζ;

• Re(s) = ωn sin θ = ζωn; and,

• Im(s) = cos θωn =
√

1 − sin2 θωn =
√

1− ζ2ωn = ωd.

Given these relationships, it is relatively straight-forward to determine the
relationship among the time domain specifications, Mp, tr, tp and ts and the

geometry of the pole locations. In particular, solving dx(t)
dt

= 0 (homework
problem ??) for t gives

tp =
π

ωd

. (7.4)

Substituting this into the solution for x(t) gives

x(tp) =
1

k

(

1 + e
− πζ√

1−ζ2
t
)

,

and since limt→∞ x(t) = 1
k
,

Mp = e
− πζ√

1−ζ2 . (7.5)

Note that the S% settling time occurs when

e−ζωnts =
S

100

or

ts = − 1

ωnζ
ln

(

S

100

)

. (7.6)

Finally, for the rise time, tr the expression would be rather complicated, but
simply by inspecting Figure 7.9 gives the approximate relationship

tr ≈ 1.8

ωn

.

So, finally, considering how a pole may “move” as some parameter is varied,
we have the results in Figure ??.
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Figure 7.10. Complex conjugate pole geometry.
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7.3 Effect of Additional Poles and Zeros

7.4 The Root Locus Design Method

The root locus design method is a technique to generate a plot, called the root
locus plot that graphically depicts how the poles of a transfer function vary
as some parameter in the system, typically a controller gain, is varied. The
procedure is rather straight forward, as is the derivation of the rules. Recall,
that the nature of the response of the system is primarily dictated by the location
of the poles of the transfer function; hence, a graphical depiction of how the poles
move as a parameter is varied is extremely informative.

7.4.1 Quick Review of Complex Variables

To understand the root locus plotting rules, two facts regarding multiplication
of complex numbers must be at the forefront and are worth repeating.

1. If a, b ∈ C, then ∠ (ab) = ∠a + ∠b, that is, the phase of the product of
two complex numbers is the sum of the phases of the two numbers.

2. If a, b ∈ C, then |ab| = |a||b|, that is, the magnitude of the product of two
complex numbers it the product of the magnitudes of the two numbers.

For division, the rules are similar.

1. If a, b ∈ C, then ∠
(

a
b

)

= ∠a−∠b, that is, the phase of the product of two
complex numbers is the difference of the phases of the two numbers.

2. If a, b ∈ C, then
∣

∣

a
b

∣

∣ = |a|
|b| , that is, the magnitude of the product of two

complex numbers it the quotient of the magnitudes of the two numbers.

Also, since we are going to deal graphically with the difference between
complex numbers, it is worth pointing out that if s and a are complex numbers,
then the complex number s − a graphically is the vector pointing from a to s.
This is illustrated in Figure 7.12.

7.4.2 Graphical Interpretation of a Transfer Function

Now, consider a transfer function of the form

G(s) =

∏m

i=1 (s− zi)
∏n

j=1 (s− pj)
=
sm + a1s

m−1 + a2s
m−2 + · · · + am−1s+ am

sn + b1sn−1 + b2sn−2 + · · · + an−1s+ an

,

where the middle term is simply expressed in factored form and the right hand
term is simply expressed as the individual terms of the polynomial in s. In the
next section, graphically determining the magnitude and phase of G(s) for a
given value of s based upon its pole and zero values will be necessary. From the
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Figure 7.12. Vector interpretation of the difference between
two complex numbers.

above facts regarding multiplication and division of complex numbers it follows
that for any given value of s

∠G(s) =

m
∑

i=1

∠ (s− zi) −
n
∑

j=1

(s− pj)

and

|G(s)| =

∏m

i=1 |s− zi|
∏n

j=1 |s− pj |
.

The significance of these two equations is critical. Simply by plotting the
location of the poles and zeros of G(s), it is easy to determine both the phase
and magnitude (and hence the value) of G(s) graphically. This is illustrated by
the following example.

7.4.1 Example Let

G(s) =
s+ 2

(s+ 4)2 + 9
. (7.7)

Determine the magnitude and phase of G(−4 + 0i) = G(−4).
Referring to Figure 7.13 and letting s = −4

∠ (s− z1) = 180◦

∠ (s− p1) = −90◦

∠ (s− p2) = 90◦.
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z1 = −2

p1 = −4 + 3i

p2 = −4 − 3i

s = −4
s− z1

s− p1

s− p2

Figure 7.13. Graphically evaluating G(−4) for Equation 7.7.

Hence

∠G(s) = ∠G(−4)

=

m
∑

i=1

∠ (s− zi) −
n
∑

j=1

(s− pj)

= 180◦ − (−90◦ + 90◦)

= 180◦.

Also,

∠ |s− z1| = 2

∠ |s− p1| = 3

∠ |s− p2| = 3.

Hence

|G(s)| = |G(−4)|

=

∏m

i=1 |s− zi|
∏n

j=1 |s− pj |

=
2

3 · 3
=

2

9
.
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Figure 7.14. Block diagram for Example 7.4.2.

This can be verified by direct substitution as well since

G(−4) =
−4 + 2

(−4 + 4)
2

+ 9
=

−2

9
,

so

∠G(−4) = 180◦

|G(−4)| =
2

9
.

7.4.3 Root Locus Plotting Rules

Consider a transfer function with a characteristic equation of the form

1 + kG(s) = 0. (7.8)

This form of a characteristic equation is quite common, as is illustrated by the
following examples.

7.4.2 Example Consider the block diagram in Figure 7.14. Clearly

Y (s)

R(s)
=

kG(s)

1 + kG(s)
,

so the characteristic equation of this transfer function is of the form of
Equation 7.8.

7.4.3 Example Consider the block diagram in Figure 7.15. Clearly

Y (s)

R(s)
=

kG1(s)

1 + kG1(s)G2(s)
,

so the characteristic equation of this transfer function is of the form of
Equation 7.8 if G(s) = G1(s)G2(s).
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Figure 7.15. Block diagram for Example 7.4.3.

If the denominator of a transfer function is of the form of Equation 7.8, then
the values of s which satisfy it also satisfy

G(s) = −1

k
.

If we assume that 0 < k < +∞, then

∠

(

−1

k

)

= ±180◦.

Thus, the s values that satisfy it are such that

∠G(s) = ±180◦.

Thus, on the complex plane, any s value that satisfies Equation 7.8 must be
such that

m
∑

i=1

∠ (s− zi) −
n
∑

j=1

(s− pj) = ±180◦ (7.9)

where the pj and zi are the poles and zeros of G(s) respectively. Similarly

∏m

i=1 |s− zi|
∏n

j=1 |s− pj |
=

∣

∣

∣

∣

1

k

∣

∣

∣

∣

. (7.10)

Equations 7.9 and 7.10 are the basis for developing the rules to plot a root
locus plot.

7.4.4 Root Locus Plotting Rules

The following list is the steps to plot a root locus plot for a system with a
characteristic equation of the form of Equation 7.8.

1. Plot the poles and zeros of G(s) on the complex plane.

Note that regardless of the value of k, Equation 7.8 will always have n
solutions because if both sides of Equation 7.8 is multiplied by the de-
nominator of G(s), which is a nth order polynomial in s, the result is
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an nth order polynomial in s. Thus, the root locus has n “branches” of
solutions. Also note that G(s) has n poles. Since

lim
k→0

∣

∣

∣

∣

1

k

∣

∣

∣

∣

= ∞

for k values near 0, the s values that satisfy Equation 7.8 must be such
that

lim
k→0

|G(s)| = ∞,

which are precisely the poles of G(s). Thus for k values near 0, the root
locus is near the poles of G(s).

Also since

lim
k→∞

∣

∣

∣

∣

1

k

∣

∣

∣

∣

= 0

the values of s that satisfy Equation 7.8 must be such that

lim
k→∞

|G(s)| = 0,

which are precisely the zeros of G(s). Note, however, that Equation 7.8
has n solutions, but G(s) has only m zeros and we have assumed that
m < n. Hence n−m of the solutions mustgo elsewhere. Since

G(s) =

∏m

i=1 (s− zi)
∏n

j=1 (s− pj)
=
sm + a1s

m−1 + a2s
m−2 + · · · + am−1s+ am

sn + b1sn−1 + b2sn−2 + · · · + an−1s+ an

and n > m, then
lim

|s|→∞
|G(s)| = 0.

Hence, the other n−m values of s which are such that

lim
k→∞

|G(s)| = 0,

are complex numbers s such that |s| → ∞.

Hence, if we think of the root locus starting when k = 0 and ending as
k → ∞, then the n branches of the root locus start at the n poles
of G(s) and end either at the m zeros of G(s) or ∞.

2. On the real axis root locus is to the left of an odd number of
poles plus zeros.

This rule focuses only on determining solutions to Equation 7.8 that are
real. Consider Figure 7.16 which has the poles and zeros of the transfer
function

G(s) =
(s+ 2) (s− 1)

(

s2 + 2s+ 12
)

(s2 + 8s+ 25) (s+ 6) (s− 2) (s+ 8)
(7.11)

plotted in accordance with step 1.



90 CHAPTER 7. CLASSICAL CONTROL THEORY

−10 −8 −6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

Figure 7.16. The poles and zeros for G(s) in Equation 7.11.

Recall that the phase of G(s) is the sum of all the angles from the zeros to
s minus the sum of all the angles from the poles to s. Note that for an s
value anywhere on the real axis, the contribution to the phase of G(s) due
to either the complex poles or zeros will be zero since the angle from each
one in a complex conjugate pair exactly cancel each other as is illustrated
in Figure 7.17.

Since the net contribution to ∠G(s) for s values on the real axis by the
complex conjugate poles and zeros is zero, we only need to consider the
contribution to ∠G(s) by the real poles and zeros. This is especially simple
since the angles from all the poles and zeros on the real axis to s values
on the real axis can only be 0◦ or ±180◦.

For any real s values to the right of all the poles and zeros of G(s) on the
real axis ∠G(s) must be zero since all the angles from the poles and zeros
on the real axis are zero, as is illustrated in Figure 7.18. Now, proceeding
along the real axis to the left, once s passes through the first pole, there
will be a net change in ∠G(s) of −180◦. Hence, for any s value on the
real axis between the pole located at s = 2 and the zero located at s = 1,
∠G(s) = −180◦, as is illustrated in Figure 7.19.

Happily proceeding farther to the left on the real axis between the zero
located at s = 1 and the zero located at s = −2, ∠G(s) = 0◦ since ∠G(s) =
180◦ ( from the zero at s = 1) + −180◦ ( from the pole at s = 2) = 0◦.

Continuing in this manner yields obviously yields rule for Step 2. Fig-
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Figure 7.17. Phase contribution due to complex conjugate
poles and zeros to G(s) for s ∈ R is zero.
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Figure 7.18. On the real axis to the right of all real poles and
zeros of G(s), ∠G(s) = 0◦.
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Figure 7.19. On the real axis to the left of an odd number of
poles plus zeros of G(s), ∠G(s) = ±180◦.
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Figure 7.20. On the real axis to the left of an even number of
poles plus zeros of G(s), ∠G(s) = 0◦.
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Figure 7.21. Segments of the root locus on the real axis for
G(s) given in Equation 7.11.

ure 7.21 illustrated the intervals of the real axis that correspond to this
rule for the example consider thus far.

3. As k → ∞, n − m branches of the root locus go to (complex)

infinity along asymptotes with angles α = (2j−1)
n−m

180◦, where j =
1, 2, . . . , (n−m).

Considering again the transfer function in Equation 7.11, Figure 7.22 il-
lustrates a plot of the poles and zeros of G(s) and an s value with a very
large magnitude. Clearly, for such large values of s, the angles from all
the poles and zeros of G(s) are nearly identical. If this value is denoted
by α, then

∠G(s) =

m
∑

i=1

∠ (s− zi) −
n
∑

j=1

(s− pj)

= mα− nα

= (m− n)α.

In order to satisfy Equation 7.8, ∠G(s) must be equal to ±180◦ or ±180◦+
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Figure 7.22. Determining ∠G(s) for values of s with large
magnitudes.

j360◦ for j = 0, 1, 2, . . .. Hence

α =
±180◦ + 2j180◦

m− n

=
2j − 1

n−m
180◦

for j = 1, 2, . . . , (n−m) .

4. The asymptotes are centered on the real axis at the point given

by
P

n
i=1

pi−
P

m
i=1

zi

n−m
.

There is not much to learn from the derivation of this.

5. The point(s) where the locus either breaks away from or into
the real axis is determined by solving dK

ds
= 0.

Since the characteristic equation

1 + kG(s) = 0

may have either real or complex conjugate roots for various values of k,
these “break away” or “break in” points are the points where the root
switch from being a pair of real poles to a complex conjugate pair and
conversely, respectively.
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7.4.4 Example Consider

1 + kG(s) = 1 + k
1

(s+ 2) (s+ 4)

+ s2 + 6s+ (8 + k)

This has roots
s = −3±

√
1 − k

which are real for k < 1, complex for k > 1 and repeated for k = 1.
These solutions are illustrated in Figure 7.23, which is nothing more
than the root locus for G(s).

Observe that solving the characteristic equation for k gives

k = − (s+ 2) (s+ 4) .

Solving dk
ds

= 0 gives

dk

ds
= − (2s+ 3) = 0 =⇒ s = −3,

which is exactly the value of s where the roots switch from two distinct
real poles to a complex conjugate pair of poles.

While they are necessarily slightly more complicated to construct, as will
be part of subsequent root locus examples, it is conversely possible for a
complex conjugate pair of poles to switch to two real poles a k increases.

The basis for this rule is obvious upon a moment’s reflection. If a distinct
pair of real poles move closer together as k increases and then split into
a complex conjugate pair, the value for k at which this occurs will be a
local extremum along the real axis; hence, dk

ds
= 0 at the point at which

that occurs. Similarly, if a pair of complex conjugate poles move to the
real axis and split into a distinct pair as k increases, the k value at which
this occurs on the real axis is a local minimum. Note that not all the
values of s for which dk

ds
= 0 correspond to break in or break away points.

This is because k as a function of s may have multiple extrema, but only
some of them will happen to be real, and furthermore happen to be on
the portions of the real axis where the root locus happens to exist.

7.4.5 Example Plot the root locus for the system illustrated in Fig-
ure 7.24. From block diagram algebra,

Y (s)

R(s)
=

k
(

1
(s+2)(s+4)

)

1 + k
(

1
(s+2)(s+4)

)(

1
s+6

) ,

so the characteristic equation is

1 + kG(s) = 0,
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Figure 7.23. Roots of a characteristic equation may change
from a real pair to a complex conjugate pair.

where

G(s) =
1

(s+ 2) (s+ 4) (s+ 6)
.

Applying the rules developed so far, constructs the root locus illus-
trated in Figure 7.25.

(a) The poles of G(s) are located at s = −2,−4 and −6.

(b) On the real axis, the locus is between the two poles at s = −2
and s = −4 and to the left of the pole at s = −6.

(c) Since there are three poles and no zeros, n = 3 andm = 0. Hence
there are three asymptotes. The angles are

α1 =
2(1) − 1

3
180◦ = 60◦

α2 =
2(2) − 1

3
180◦ = 180◦

α3 =
2(3) − 1

3
180◦ = 300◦.

(d) The asymptotes are centered at

∑n
i=1 pi −

∑m
i=1 zi

n−m
=

(−2 − 4 − 6) − (0)

3
= −4.
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1
s+6

Figure 7.24. Block diagram for Example 7.4.5.

(e) Solving for k in the characteristic equation gives

k = − (s+ 2) (s+ 4) (s+ 6) = −
(

s3 + 12s2 + 44s+ 48
)

,

so
dk

ds
= −

(

3s2 + 24s+ 44
)

= 0

which gives

s = −4±
√

144− 3 ∗ 44

3

= −4± 2√
3

= −5.1547,−2.8453.

The first solution is not on the locus. The second is the break-
away point.

This is all the information necessary to construct the root locus. The
final root locus plot is illustrated in Figure 7.25.

The following is a slightly more complicated example.

7.4.6 Example Plot the solutions for

1 + kG(s) = 0

where

G(s) =
s+ 8

(s+ 2) (s+ 4)
.

Again, following the rules that have been developed thus far constructs
the root locus plot.

(a) There is a pole at s = −2, another pole at s = −4 and a zero at
s = −8.

(b) On the real axis, the root locus is between the two poles and
then to the left of the zero.
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Figure 7.25. Root locus diagram for Example 7.4.5.

(c) Since n = 2 and m = 1, there is only one asymptote at α = 180◦,
and, in fact, the root locus has already been completed there by
the previous rule.

(d) Since the only asymptote is along the real axis, where it is cen-
tered on the real axis is meaningless.

(e) At k = 0 the locus starts at the poles. As k → ∞ they approach
either the zero or ∞ along the asymptote. Thus it must be the
case that the locus breaks away between the two poles and breaks
in to the left of the zero. Since there is no locus on the real axis
between the pole at s = −4 and the zero at s = −8, the locus
must do this. In particular, solving for k gives

k = − (s+ 2) (s+ 4)

s+ 8

and
dk

ds
= −s

2 + 16s+ 40

(s+ 8)
2 = 0.

Hence,

s = −8 ± 2
√

6 = −12.899,−3.101.

The first value is the break in point to the left of the zero and
the second value is the break away point between the two poles.

The final root locus plot is illustrated in Figure 7.26. Note that it
is not possible to simply sketch the exact path that the locus takes
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Figure 7.26. Root locus diagram for Example 7.4.6.

between the break away point and break in point. However, keep in
mind that the root locus is a plot of the solutions of a relatively low
order polynomial. Hence, it should be rather intuitive that it cannot
follow a path with a large variation in curvature with many inflection
points, i.e., as long as the polynomial is not of a very large order, the
roots cannot vary in some crazy manner as k is varied.

A good rule of thumb in such cases is to make the path somewhat of
a semi-circle. If a more exact plot is necessary, then one must resort
to tabulating various values for k and actually computing the roots of
the characteristic equation for each value of k.

6. Departure angles from the poles and arrival angles at the zeros
that are not on the real axis are determined by selecting a point
very near the pole or zero and applying the angle conditions.

Since

∠G(s) =

m
∑

i=1

∠ (s− zi) −
n
∑

i=1

∠ (s− pi) = ±180◦,

we can solve for any one of the angle terms, say the one corresponding to
pj , i.e.,

∠ (s− pj) =

m
∑

i=1

∠ (s− zi) −
n
∑

i=1,i6=j

∠ (s− pi) ± 180◦. (7.12)
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If a point is very close to pj , i.e., s ≈ pj , then Equation 7.12 can be
written as

∠ (s− pj) =

m
∑

i=1

∠ (pj − zi) −
n
∑

i=1,i6=j

∠ (pj − pi) ± 180◦. (7.13)

Note that the right hand side of Equation 7.13 is composed of the angles
from all the poles and zeros to the pole pj .

A similar consideration gives the arrival angle for a complex zero as

∠ (s− zj) = ±180◦ +
n
∑

i=1

∠ (zj − pi) −
m
∑

i=1,i6=j

∠ (zj − zi) . (7.14)

7.4.7 Remarks
(a) Equations 7.13 and 7.14 are only valid for s values very close to

pj and zj respectively.

(b) For poles and zeros on the real axis, the departure and arrival
angles are handled automatically by the “left of an odd number
of poles plus zeros” rule; hence, applying this rule, while giving
the correct answer, is redundant.

(c) Since complex roots of a polynomial equation always occur in
complex conjugate pairs, it is only necessary to compute the
departure or arrival angles for one of the two poles or zeros in a
complex conjugate pair. The root locus must be symmetric about
the real axis so the departure or arrival angle corresponding to
the conjugate of the pole or zero just computed will simply be
−1 times the angle computed.

A few examples are in order.

7.4.8 Example Plot the root locus for

G(s) =
1

(s+ 2)
2

+ 9
.

(a) There are two poles located at s = −2 ± 3i.

(b) There are no real poles or zeros, so there is no region on the real
axis that is to the left of an odd number of poles plus zeros.

(c) There are two asymptotes. The asymptote angles are

α1 =
1

2
180◦ = 90◦

α1 =
3

2
180◦ = 270◦.

Observe that the asymptote angles only depend on the number
of poles and zeros of G(s) and not the location of the poles and
zeros. Thus, the angles are always 90◦ and 270◦ when there are
two more poles than zeros.
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Figure 7.27. Departure angle computation for Example 7.4.8.

(d) The asymptotes are centered at
∑n

i=1 pi −
∑m

i=1 zi

n−m
=

−4

2
= −2.

(e) The locus is never on the real axis, thus there are no break in or
break away points.

(f) The departure angle from each pole is given by Equation 7.13.
Let p1 = −2+3i and p2 = −2−3i as is illustrated in Figure 7.27.
A simple computation gives for any s ≈ p1

∠ (s− p1) =

m
∑

i=1

∠ (p1 − zi) −
m
∑

i=1,i6=1

∠ (p1 − pi) ± 180◦

= −90◦ ± 180◦

= 90◦ or − 270◦,

which in either case is “straight up.” One can compute the de-
parture angle for p2 or use the symmetry property to finally
construct the root locus plot illustrated in Figure 7.28.

The following is slightly more complicated.

7.4.9 Example Plot how the poles of the transfer function for the
system illustrated in Figure 7.29 change as k varies from 0 to +∞.
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Figure 7.28. Departure angle computation for Example 7.4.8.

(a) There are two located at s = −2± 3i and one zero at s = −8.

(b) The root locus on the real axis is to the left of the zero.

(c) Since there are two poles and one zero, there is only one asymp-
tote with angle α = ±180◦.

(d) Computing the center point of the asymptote is meaningless since
it is along the real axis.

(e) Solving for k gives

k = −s
2 + 4s+ 13

s+ 8

and differentiating with respect to s gives

dk

ds
= −s

2 + 16s+ 19

(s+ 8)
2 = 0

which gives

s = −8 ± 3
√

5

= −14, 71,−1.29.

The former is the break in point to the left of the zero. The
latter is not on the locus on the real axis, so is ignored.
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Figure 7.29. Block diagram for Example 7.4.9.
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Figure 7.30. Departure angle computation for Example 7.4.9.

(f) Referring to Figure 7.30, the departure angle from p1 is computed
as the following for s ≈ p1

∠ (s− p1) = 26.56◦ − 90◦ ± 180◦

= 116.57◦.

The complete root locus is illustrated in Figure 7.31. Note that the
locus leaves p1 at an angle of 116.57◦ and leaves p2 at an angle of
−116.57◦.
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Figure 7.31. Complete root locus plot for Example 7.4.9.

7.5 Problems

(a) Plot the solutions to

1 + kG(s) = 0

for

G(s) =
1

(s+ 4)
(

(s+ 2)
2
+ 9
) .

(b) Plot the solutions to

1 + kG(s) = 0

for

G(s) =
s+ 8

(s+ 2) (s+ 4) (s+ 6)

(c) Plot the solutions to

1 + kG(s) = 0

for

G(s) =
s+ 8

(s+ 2) (s+ 4)
.

(d) Plot the solutions to

1 + kG(s) = 0
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for

G(s) =
s+ 6

(s+ 4)
(

(s+ 2)
2

+ 9
) .
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