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• Do not start or turn the page until instructed to do so.

• You have 50 minutes to complete this exam.

• This is an open book exam. You may consult the course texts, any other text book,
your class notes, homework solutions and your own homework sets. You may not use
a calculator.

• There are four problems, each is worth 25 points.

• Your grade on this exam will constitute 25% of your total grade for the course. Show

your work if you want to receive partial credit for any problem.

• Answer each question in the space provided on each page. If you need more space, use
the back of the pages or use additional sheets of paper as necessary.

“It is ever so with the things that Men begin: there is a frost in Spring, or a blight in Summer, and they fail
of their promise,” said Gimli.

Yet seldom do they fail of their seed,” said Legolas. “And that will lie in the dust and rot to spring up again
in times and places unlooked-for. The deeds of Men will outlast us, Gimli.”

“And yet come to naught in the end but might-have-beens, I guess,” said the Dwarf.

“To that, the Elves do not know the answer,” said Legolas.
— J.R.R. Tolkien, The Lord of the Rings



1. Find x(t) such that

ẋ − 2x = 5

x(0) = −
3

2
.

(25 points)

You can do this one of three ways.

(a) Using an integrating factor we have

µ(t) = e

∫

−2dt = e−2t

so

x(t) = e2t

(
∫

5e−2tdt + c

)

= −
5

2
+ ce2t.

Evaluating the initial condition gives c = 1 so

x(t) = e2t −
5

2
.

(b) You can also use undetermined coefficients. Computing the homogeneous solution gives a char-
acteristic equation of

λ − 2 = 0 =⇒ xh(t) = e2t.

Assuming a particular solution that is a constant xp = A and substituting gives

xp = −
5

2

so the complete solution is

x(t) = xh(t) + xp(t) = e2t −
5

2
.

(c) Finally, you could recognize that this is exactly Equation 2 on page 32 of the course text with
a = −2 and b = 5 and substitute into Equation 5 directly gives

x(t) = −
5

2
+ ce2t,

and just like above the initial condition gives c = 1 so

x(t) = −
5

2
+ e2t.
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2. Find x(t) such that

ẍ − 4ẋ + 4x = 2e2t

x(0) = 0

ẋ(0) = 0.

(25 points)

You can use either undetermined coefficients or variation of parameters. In either case, you need two
linearly independent homogeneous solutions. Assuming xh(t) = eλt gives

λ2 − 4λ + 4 = 0 =⇒ λ = 2

a repeated root. Thus
xh(t) = c1e

2t + c2te
2t.

(a) Using undetermined coefficients, we first are inclined to assume a solution of the form xp(t) = Ae2t.
However, this is one of the homogeneous solutions. Naturally, we next would try xp(t) = Ate2t

which is also a homogeneous solution. Thus we must assume

xp(t) = At2e2t.

Thus ẋp(t) = 2Ate2t + 2At2e2t and ẍp(t) = 2Ae2t + 8Ate2t + 4At2e2t. Substituting into the
equation and simplifying gives

2Ae2t = 2e2t =⇒ A = 1.

Thus
x(t) = xh(t) + xp(t) = c1e

2t + c2te
2t + 2t2e2t.

Evaluating the initial conditions gives

x(0) = c1 = 0 =⇒ c1 = 0

and
ẋ(0) = c2 = 0 =⇒ c2 = 0.

Thus
x(t) = t2e2t.

(b) Using variation of parameters we first need the Wronskian

W =

∣

∣

∣

∣

e2t te2t

2e2t e2t + 2te2t

∣

∣

∣

∣

= e4t.
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Substituting into Equation 28 on page 189 gives

xp(t) = −e2t

∫ t

t0

2se2se2s

e4s
ds + te2t

∫ t

t0

2e2te2s

e4s
ds

= −e2t
(

s2
)
∣

∣

t

t0
+ te2t (2s)|

t

t0

= t2e2t

(picking t0 = 0). The initial conditions evaluate exactly as above, so

x(t) = t2e2t.

4



3. Consider

ẍ − 4ẋ + 4x = 2e2t

x(0) = 0 (1)

ẋ(0) = 0.

(a) Write this second order equation as a system of two first order equations. (5 points)

If we let x1 = x and x2 = ẋ then

d

dt

[

x1

x2

]

=

[

x2

2e2t − 4x1 + 4x2

]

.

(b) The following code is used to determine an approximate numerical solution to Equation 1 using
Euler’s method. Fill in the blanks. (10 points)

#include<stdio.h>

#include<math.h>

main() {

double t,dt,x1,x2;

double t_start=0.0,t_finish=25.0;

FILE *fp;

dt = 0.01;

x1 = 0.0;

x2 = 0.0;

fp = fopen("data.d","w");

for(t=t_start;t<=t_finish;t+=dt) {

fprintf(fp,"%.3f\t%.3f\t%.3f\n",t,x1,x2);

x1 += x2*dt;

x2 += (2.0*exp(2.0*t) - 4.0*x1 + 4.0*x2)*dt;

}

fclose(fp);

}

(c) The following code is used to determine an approximate numerical solution to Equation 1 using
the 4th order Runge-Kutta method. Fill in the blanks. (10 points)

#include<stdio.h>

#include<math.h>

main() {
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double t,dt,x1,x2;

double k1,k2,k3,k4,l1,l2,l3,l4;

double t_start=0.0,t_finish=25.0;

FILE *fp;

dt = 0.1;

x1 = 0.0;

x2 = 0.0;

fp = fopen("data.d","w");

for(t=t_start;t<=t_finish;t+=dt) {

fprintf(fp,"%.3f\t%.3f\t%.3f\n",t,x1,x2);

k1 = x2*dt;

l1 = (2.0*exp(2.0*t) - 4.0*x1 + 4.0*x2)*dt;

k2 = (x2+l1/2.0)*dt;

l2 = (2.0*exp(2.0*(t+dt/2.0)) - 4.0*(x1+k1/2.0) + 4.0*(x2+l1/2.0))*dt;

k3 = (x2+l2/2.0)*dt;

l3 = (2.0*exp(2.0*(t+dt/2.0)) - 4.0*(x1+k2/2.0) + 4.0*(x2+l2/2.0))*dt;

k4 = (x2+l3)*dt;

l4 = (2.0*exp(2.0*(t+dt)) - 4.0*(x1+k3) + 4.0*(x2+l3))*dt;

x1 += (k1 + 2.0*k2 + 2.0*k3 + k4)/6.0;

x2 += (l1 + 2.0*l2 + 2.0*l3 + l4)/6.0;

}

fclose(fp);

}

Note, there is also the alternative, but equivalent way, that the book presents that places the dt

terms in other places.
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4. Figure 1 is a plot of the solution to

mẍ + bẋ + kx = F0 cosωt (2)

x(0) = 0

ẋ(0) = 0

where m = 1, b = 0.5, k = 1, ω = 1 and F0 = 1.
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Figure 1. Response of system in equation 2.

Match each of the following four cases with the plots illustrated in Figures 2 through 5 and explain
your reasoning. (6 points each — 1 free point!)

• In each case only one of the parameters is different from the system given above and is indicated
in bold type.

• It is acceptable that your reasoning be based upon a comparison between the given figures and
Figure 1. It is not necessary to use any equations in your explanation, but it may be helpful.

• The time axis starts at t = 25 in each figure; therefore, it is acceptable to only consider the
particular solution. By the time t = 25 the effect of the homogeneous solution is negligible.

• Note that scale of the axis of the ordinate varies dramatically among the various figures.

With the give parameter values,

ωn = 1 and ζ =
1

4
so this is case 13 in the vibrations summary handout which gives

xp(t) =
F0

√

(k − ω2m)2 + (bω)2
cos (ωt − φ) . (3)
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(a) Figure 2 is where m = 1, b = 0.5, k = 1, ω = 2 and F0 = 1 because the forcing frequency is
twice as large; hence, the particular solution will have a frequency twice as large by comparison
to Figure 1.

(b) Figure 4 is where m = 1, b = 0.5, k = 1, ω = 1 and F0 = 2. because clearly from Equation 3
doubling the forcing amplitude will double the magnitude of the response.

(c) Figure 5 is where m = 1, b = 0.5, k = 2, ω = 1 and F0 = 1. because increasing k will increase the
magnitude of the denominator in Equation 3 reducing the amplitude of the particular solution.
By comparison with Figure 1, Figure 5 has a smaller amplitude.

(d) Figure3̃ is where m = 1, b = 0.0, k = 1, ω = 1 and F0 = 1. because this is the only possible case
for the response which corresponds to undamped resonance.
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Figure 2. Figure 3.
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Figure 4. Figure 5.
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