It is possible to complete all of these exercises by hand.

1. Each of the matrices in this problem has a full set of linearly independent
eigenvectors. For each one, find the general solution to & = A¢ and indicate
whether Theorem 6.5.1 or 6.5.6 applies:
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termine the general solution to & = A¢ for:
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4. For As, A4, A7 and Ag in Exercise 3, determine the solution if
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For As, A3, A4, Ag and Ay in Exercise 1, determine the solution if
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Each of the matrices in this problem have some complex eigenvalues. De-
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5. Each of the matrices in this problem has some repeated eigenvalues. De-
termine the general solution to & = A¢ for:
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6. Prove Theorem 6.7.13 by substituting Equation 6.29 into f = A¢ and
making use of the properties of generalized eigenvectors.

7. Find the general solution to
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8. Consider
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9. Determine the solution to & = A¢ + g(t) where
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Explain why it does not work.

e What happens when you assume
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Explain why it does not work.
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e using the method of undetermined coefficients;

e by determining a coordinate transformation that diagonalizes A; and,

e using the method of variation of parameters.
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10. Determine the solution to & = A¢ + g(t) where
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e using the method of undetermined coefficients;
e by determining a coordinate transformation that diagonalizes A; and,

e using the method of variation of parameters.

Since A = AT, make use of the fact that T—' = TT. Verify this fact by
showing that 777 = I.

11. Compute the matrix exponential for A;, Ay and Ag from Exercise 1. For
the initial condition given in Expercise 2, A3 and Ag verify that

£(t) = e™'¢(0)

is the same solution as was computed in Exercise 2.



