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Abstract: We will give an overview of some recent work done at Imperial College London that
aims to develop a deep understanding of the fundamental issues that are important in numerical
representations when developing optimization algorithms for deployment in cyber-physical
systems. We will show that existing formulations and algorithms for solving optimization
problems result in very poor performance when low-precision or fixed-point arithmetic is used.
We will also present some new systematic methods and theoretical results that we have developed
for addressing some of these problems. These results allow for optimization algorithms to be
implemented in embedded systems with significant reductions in cost, energy and computation
time.

1. INTRODUCTION

In many cyber-physical applications, where one would like
to implement optimal control and signal processing algo-
rithms, one needs to use the latest measurements to update
and solve a sequence of numerical optimization problems.
Solving these optimization problems in a computationally
efficient and numerically reliable fashion on an embedded
computing system is a challenging task.

A major factor in deciding what to include on a micro-
processor is the die area. Because of defects during man-
ufacturing, not all manufactured dies are acceptable — a
good rule of thumb for modern manufacturing processes
is that the cost per die grows roughly with the square of
the die area [Hennessy and Patterson, 2011, Chap. 1.6].
Furthermore, static and dynamic power consumption of a
chip roughly grows at least linearly with area, ignoring the
additional increase in power consumption due to increases
in interconnection length. As a consequence, in order to
reduce cost and energy requirements, it pays to minimize
the area taken up by a microprocessor.

One of the key choices that an engineer has to make in
order to control the area of a chip is the number repre-
sentation that will be used in the arithmetic units. For
fixed-point arithmetic with bit parallel two’s complement,
the area of multipliers typically scales quadratically and
the area of adders scales linearly with the number of
bits. For floating-point arithmetic, the area of multipliers
and adders usually scale somewhere between linearly and
quadratically with the number of bits, since the area of
the shifter in the floating-point adder scales somewhere
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between linearly and quadratically with the number of
bits. It is clear that significant savings in cost and power
requirements are possible by appropriate choice of number
representation and reducing the number of bits. Improve-
ments in latency (time taken to complete a computation,
or commonly referred to as the computational delay) and
throughput (number of completed computations per unit
time) are also possible by reducing the number of bits.

Nearly all CPUs in modern desktop PCs provide hardware
support for the IEEE-754 standard for double-precision
floating-point, which uses 52 bits for the mantissa (or sig-
nificand), 11 bits for the exponent and one bit for the sign.
However, most microprocessors in embedded systems do
not offer any support for double-precision floating-point.
Instead, they may only offer floating-point support for
single precision (23 bits for the mantissa and 8 bits for the
exponent) or half precision (10 bits for the mantissa and 5
bits for the exponent) or not even provide any support for
floating-point at all. It is therefore possible that, because of
a significant decrease in precision or different number rep-
resentation, an optimization algorithm that gives reliable
numerical results when implemented in the office desktop
or laptop computer might give completely different results
when implemented on an embedded system.

2. FIXED-POINT ARITHMETIC

Because energy consumption and cost are two major con-
cerns in embedded systems, most microprocessors provide
very good support for fixed-point arithmetic. This is be-
cause a fixed-point arithmetic unit takes up significantly
less area on a chip than a floating-point unit with the same
number of bits, therefore resulting in significant savings in
manufacturing cost and energy requirements. Fixed-point



Table 1. Resources required and latency for a
single floating- or fixed-point adder on a Xilinx

Virtex-7 XT 1140 FPGA.

Number Representation Registers Latency
Flip-flops (FFs) (clock cycles)

double float (52-bit mantissa) 1046 14
single float (23-bit mantissa) 557 11

53-bit fixed-point 53 1
24-bit fixed-point 24 1

units are also faster than floating-point units with the
same number of bits, due to the fact that the radix points
(binary points) of two numbers do not need to be aligned
during addition or subtraction. Table 1 shows the resources
required and latency of an addition on a modern Field Pro-
grammable Gate Array (FPGA), which is a popular class
of embedded processors employed in many applications.
As can be seen, it is possible to decrease the latency of
an addition by roughly one order of magnitude, with an
even bigger relative reduction in the resources required, by
switching from floating-point to fixed-point.

In order to allow for the use of fixed-point arithmetic in op-
timization solvers, we will focus on the most computation-
ally expensive and numerically critical part, namely the
computation of the search direction. We will propose the
use of the minimal residual (MINRES) method for solving
the resulting set of linear equations and implementing the
Lanczos algorithm using fixed-point arithmetic.

The main challenge for fixed-point over floating-point is
to avoid overflow and develop a computationally tractable
method to a priori determine tight bounds on the range of
the variables. Current methods for automatically comput-
ing the range of variables cannot handle algorithms that
are both nonlinear and recursive, which includes direct and
iterative algorithms for solving systems of linear equations.

We will present a novel preconditioner that guarantees
that the eigenvalues of the preconditioned matrix has
eigenvalues inside the unit disk. This allows one to an-
alytically derive tight bounds on all the variables in the
Lanczos process, in order to determine a priori where to
place the radix point (binary point) such that numerical
errors due to overflow are avoided. We will show that fixed-
point arithmetic makes more efficient use of the resources
and reduces latency, while also being able to guarantee
the same accuracy of the solution as with floating-point
arithmetic.

3. LOW-PRECISION ARITHMETIC

Double- or single-precision floating-point representation
may be unnecessarily precise for a given application,
where precision would be better traded in for improving
more important aspects, such as speed, cost and energy
consumption. The problem with reducing the number of
bits is that existing optimization algorithms may give
unacceptable results when using a very low precision.

When implementing algorithms for solving optimization
problems using low precision arithmetic, it is important to
be careful with the formulation of the optimization prob-
lem so that important information is not lost prior to solv-
ing the problem. However, current methods for computing

0 5 10 15 20
−2

0

2

4

time [s]

st
a
te

5

 

 
5 bits, shift

5 bits, delta

52 bits, shift

0 5 10 15 20

−0.5

0

0.5

time [s]

in
p
u
t
2

Fig. 1. Sample state and input trajectories of the closed-
loop control of a benchmark spring-mass system with
3 masses, 2 inputs and sample period of 10 ms.

an equivalent discrete-time model of the continuous-time
system are numerically sensitive to round-off error; an
off-the-shelf optimization algorithm would not be able to
detect and correct for any errors in the data, because
information is lost prior to solving the optimization prob-
lem. Figure 1 shows that the closed-loop response of a
5-bit mantissa floating-point implementation of the model
predictive control algorithm of Rao et al. [1998], which uses
the shift form to obtain a discrete-time model, may give
an unacceptable response compared to a double-precision
(52-bit) implementation.

We will show how the delta operator approach of Middle-
ton and Goodwin [1986] can be extended to develop a novel
optimization problem formulation that is less susceptible
to numerical errors compared to current methods. We
will also outline a new optimization algorithm that pays
attention to the order in which computations should be
done in order to minimize the effect of numerical errors and
avoid any increase in computational resources or latency.
Figure 1 shows that a 5-bit mantissa floating-point im-
plementation based on our methods produces trajectories
that almost perfectly overlap with the ones from a double-
precision shift implementation.
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