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The CPS context

Two key aspects of CPS:

• Hybrid: integrate continuous and discrete dynamics

• Complex: a compositional theory is needed.

Need a theoretical framework for hybrid systems that is compositional.

Notions of interconnection ‖ to be used:

Interconnection of physical systems: sharing of variables
Interconnection of discrete systems: sharing of labels
Both are bilateral.
Question: How to cope with information flow ?
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The CPS context

Topics addressed in this talk:

• Bisimulation as a notion of equivalence Σ1 ∼ Σ2 of hybrid systems.

• Fundamental requirement for any notion of equivalence: for any Σ

Σ1 ∼ Σ2 ⇒ Σ1 ‖ Σ ∼ Σ2 ‖ Σ

• To be used for exact model reduction.

• Notion of bisimulation is key to a ’calculus’ of hybrid systems;
different representations of the same system.

• One-sided version of bisimulation equivalence: abstraction or
simulation.

• Basis for verification and synthesis (see comment later on).
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The CPS context

Available notions of equivalence

• Equivalence notions in control theory: equality of transfer functions,
state space equivalence.

• Behavioral equivalence: equality of (external) behavior.

• Equivalence for languages: equality of language.

• Notion of equivalence for labeled transition systems: bisimulation.
Stronger than language equality in case of non-deterministic systems.
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The CPS context

Bisimulation of labeled transition systems (automata)
(L,A,E ⊂ L×A× L)

A bisimulation relation between two automata (Li ,A,Ei ), i = 1, 2, is a
subset

R ⊂ L1 ×L2

with the following property.
Let (l−1 , l−2 ) ∈ R. Then for every a ∈ A and l+1 ∈ L1 such that

(l−1 , a, l+1 ) ∈ E1

there should exist l+2 ∈ L2 such that

(l−2 , a, l+2 ) ∈ E2

while (l+1 , l+2 ) ∈ R, and conversely.
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The CPS context

Example: Bisimulation of interconnection of labeled

transition systems
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Figure: Interconnection of two labeled transition systems
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The CPS context
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Figure: Bisimulation of buffer and reduced buffer; respectively, of composed
system and reduced composed system
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The CPS context

Bisimulation of hybrid systems: extend the notion of bisimulation for
labeled transition systems (automata) to continuous dynamics, and then
merge.

Different from computer science approaches based on discretization of the
continuous dynamics.

Bisimulation theory for continuous dynamics is directly based on the
differential equations (and not on their solutions) and admits an elegant
approach fully using geometric control theory and linear algebra.

In order to cope with multi-modal physical systems we need a theory of
continuous bisimulation for DAE systems.
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Bisimulation of linear DAE systems
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Bisimulation of linear DAE systems

Consistent states for linear DAE systems

Eẋ = Ax , x ∈ X
w = Hx , w = (u, y)

The consistent subspace V∗ for a DAE system Σ is the maximal subspace
V ⊂ X satisfying

AV ⊂ EV

and equals the set of all initial conditions x0 for which there exists a
continuous solution trajectory of Σ starting from x(0) = x0. The space V∗

is computed as the limit of the sequence

V0 = X , V j = {x ∈ X | Ax = Ev for some v ∈ V j−1}, j = 1, 2, · · · .
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Bisimulation of linear DAE systems

Bisimulation relation

Σi :
Ei ẋi = Aixi , xi ∈ Xi

wi = Hixi

A bisimulation relation between Σ1 and Σ2 is a linear subspace

R ⊂ X1 ×X2

with the following property. Take any pair of consistent states
(x10, x20) ∈ R. Then for every trajectory x1,w of Σ1 with x1(0) = x10
there exists a trajectory x2,w with x2(0) = x20 such that (x(t), x2(t)) ∈ R
for all t ≥ 0, and conversely.
Two systems are bisimilar, Σ1 ∼ Σ2, if there exists a bisimulation relation
which ’covers all consistent states’ of both systems.
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Bisimulation of linear DAE systems

Proposition

Consider two DAE systems Σi , with consistent subspaces V∗

i , i = 1, 2.
Denote by πi : X1 × X2 → Xi the canonical projections.

A subspace R ⊂ X1 × X2 with πi (R) ⊂ V∗

i , i = 1, 2, is a bisimulation
relation between Σ1 and Σ2 if and only if for all (x1, x2) ∈ R the following
properties hold:

(i) For all ẋ1 ∈ V∗

1 such that E1ẋ1 = A1x1 there should exist ẋ2 ∈ V∗

2

such that E2ẋ2 = A2x2 while

(ẋ1, ẋ2) ∈ R,

and conversely for every ẋ2 ∈ V∗

2 such that E2ẋ2 = A2x2 there should
exist ẋ1 ∈ V∗

1 such that E1ẋ1 = A1x1,

(ii)
H1x1 = H2x2
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Bisimulation of linear DAE systems

Theorem

A subspace R ⊂ X1 × X2 is a bisimulation relation between Σ1 and Σ2

satisfying πi(R) ⊂ V∗

i , i = 1, 2, if and only if

(a) R+

[

ker E1 ∩ V∗

1

0

]

= R+

[

0
ker E2 ∩ V∗

2

]

(b)

[

A1 0
0 A2

]

R ⊂

[

E1 0
0 E2

]

R

(c) R ⊂ ker

[

H1
...− H2

]
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Bisimulation of linear DAE systems

The maximal bisimulation relation R∗ ⊂ X1 × X2 can be computed by a
typical geometric control theory algorithm (similar to the maximal
controlled invariant subspace algorithm).

Σ1 and Σ2 are called bisimilar if

πiR
∗ = V∗

i , i = 1, 2,

where V∗

i is the consistent subspace of Σi , i = 1, 2.
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Bisimulation of linear DAE systems

Generalization of bisimulation theory of input-state-output systems
(Pappas03, vdS04):

Σi :
ẋi = Aixi + Biui + Gidi , di auxiliary variables for non-determinism

yi = Cixi ,

A bisimulation relation between Σ1 and Σ2 is a subspace

R ⊂ X1 ×X2

with the following property. Take any (x10, x20) ∈ R and any joint input
u1(·) = u2(·). Then for every d1(·) there should exist a d2(·) such that the
resulting x1(·), with x1(0) = x10, and x2(·), with x2(0) = x20, satisfy

(i) (x1(t), x2(t)) ∈ R, for all t ≥ 0

(ii) C1x1(t) = C2x2(t), for all t ≥ 0

and conversely.
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Bisimulation of linear DAE systems

Relation with classical equivalence theory of linear systems

Σ(A,B ,C ):

• There exists a bisimulation relation R between Σ1(A1,B1,C1) and
Σ2(A2,B2,C2) if and only if their transfer matrices
Gi(s) := Ci (Is − Ai)

−1Bi , i = 1, 2, are the same.

• If Σ1 and Σ2 are controllable then Σ1 ∼ Σ2 if and only if their
transfer matrices are the same.

• The bisimulation relation is the graph of an invertible mapping if Σ1

and Σ2 are observable.

• Factoring by the maximal bisimulation relation between a
(non-observable) system and itself reduces the system to an
equivalent observable system.
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Bisimulation of linear DAE systems

Simulation and abstraction

One-sided version of bisimulation is simulation.

Example

ẋ1 = x2

ẋ2 = x1 + x2

y = x1

is simulated by (4)
ẋ = d , y = x

(also called an abstraction of the full-order system)

Agressive technique for model reduction of transition systems; often used
for verification purposes.
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Bisimulation of hybrid systems

Definition

A hybrid system is described by a six-tuple Σhyb := (L,X ,A,W,E ,F ):

- L is a set of discrete states.

- X is a finite-dimensional manifold (the continuous state space).

- A is a set of discrete communication variables.

- W is a finite-dimensional linear space called the space of continuous
communication variables. Often the vector w ∈ W can be partitioned
into an input vector u and output vector y .

- E is a subset of L × X ×A× L× X ; a typical element of this set is
denoted by (l−, x−, a, l+, x+). E denotes the event conditions.

- F is a subset L×TX ×W, where TX denotes the tangent bundle of
X ; a typical element of this set is denoted by (l , x , ẋ ,w). F denotes
the flow conditions.
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Bisimulation of hybrid systems

A hybrid run of the hybrid system Σhyb on the time-interval [0,T ] is
specified by a five-tuple r = (E , l , x , a,w):

• Discrete set E ⊂ [0,T ] denoting the event times t ∈ [0,T ].

• l : [0,T ] → L which is constant on every subinterval between
subsequent event times ta, tb ∈ E .

• x : [0,T ] → X , w : [0,T ] → W, satisfying for all t 6∈ E

(l , x(t), ẋ(t),w(t)) ∈ F

• A discrete function a : E → A such that for all t ∈ E

(l(t−), x(t−), a(t), l(t+), x(t+)) ∈ E
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Bisimulation of hybrid systems

Definition

Consider two hybrid systems Σhyb
i = (Li ,Xi ,Ai ,Wi ,Ei ,Fi ), i = 1, 2.

A structural hybrid bisimulation relation between Σhyb
1 and Σhyb

2 is a subset

R ⊂ (L1 × X1)× (L2 × X2)

with the following properties:
Take any (l−1 , x−1 , l−2 , x−2 ) ∈ R. Then for every l+1 , x+1 , a for which

(l−1 , x−1 , a, l+1 , x+1 ) ∈ E1,

there should exist l+2 , x+2 such that

(l−2 , x−2 , a, l+2 , x+2 ) ∈ E2

while (l+1 , x+1 , l+2 , x+2 ) ∈ R, and conversely.
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Bisimulation of hybrid systems

Definition (continued)

Furthermore, take any (l1, x1, l2, x2) ∈ R. Then for every w , ẋ1 for which

(l1, x1, ẋ1,w) ∈ F1

there should exist ẋ2 such that

(l2, x2, ẋ2,w) ∈ F2

while (ẋ1, ẋ2) ∈ T(x1,x2)Rl1l2 , and conversely.

(where Rl1l2 := {(x1, x2) | (l1, x1, l2, x2) ∈ R} is assumed to be a
manifold).
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Bisimulation of hybrid systems

Example

If the flow conditions Fi are described by continuous dynamics

ẋi = A(li )xi + B(li)ui + G (li)di
yi = C (li )xi , wi = (ui , yi )

the resets are linear, and the discrete dynamics is independent of the
continuous variables, then we can apply the bisimulation theory for
continuous systems, and combine this with the standard bisimulation
theory for an underlying automaton (Pola, vdS, DiBenedetto, 2006).
Explicit algorithm for maximal bisimulation relation.
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Bisimulation of hybrid systems

Critique of bisimulation theory for continuous dynamics

• Bisimulation is a rigid notion, basically combining state space
equivalence and reduction to an observable system.

• Approximate bisimulation (Pappas, Girard, Tabuada)

• Theory of bisimulation needs to be extended to systems with
inequality constraints (cf. Kerber, vdS)

Note: Verification for discrete processes seems to be fundamentally
different from verification for continuous systems:

In the discrete case both the system and the specifications can be
eventually expressed as an automaton. Model checking is then a successful
way to do verification for complex systems.

In the continuous case the system and the specifications seldomly can be
expressed in the same framework.
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Compositional analysis

1. Passivity and dissipativity theory

2. Extending ideas from computer science:

Distinguish between two kinds of feedback interconnection:
closed feedback interconnection

u1 = −y2, y1 = u2

denoted by ‖c ,
and open feedback interconnection

u1 = −y2 + e1, u2 = y1 + e2

with e1, e2 external input signals, and denoted by ‖o .
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Compositional analysis

Proposition

Simulation 4 is compositional with respect to (closed or open) feedback
interconnection

ΣP1
4 ΣQ1

∧ ΣP2
4 ΣQ2

=⇒ ΣP1
‖ ΣP2

4 ΣQ1
‖ ΣQ2
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Compositional analysis

Proposition

For open feedback interconnection in fact an equivalence holds:

ΣP1
4 ΣQ1

∧ΣP2
4 ΣQ2

(1)

⇐⇒

ΣP1
‖oΣP2

4 ΣQ1
‖oΣQ2

This means that for open feedback interconnections, the problem of
checking ΣP1

‖oΣP2
4 ΣQ1

‖oΣQ2
can be reduced to the lower-dimensional

problems

ΣP1
4 ΣQ1

(2)

ΣQ1
4 ΣQ2

This is not true for closed feedback interconnections.
Which reduction rules do hold for closed feedback interconnections ?
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Compositional analysis

Assume Guarantee Reasoning

The circular AGR rule is

(A) ΣP1
‖cΣQ2

4 ΣQ1
‖cΣQ2

(3)

(B) ΣQ1
‖cΣP2

4 ΣQ1
‖cΣQ2

(C ) ΣP1
‖cΣP2

4 ΣQ1
‖cΣQ2

Theorem

(Kerber, vdS) The circular AGR rule is valid for linear systems.
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Switching port-Hamiltonian systems

The power variables always appear in conjugated pairs (such as voltages
and currents, or generalized forces and velocities), and therefore take their
values in dual linear spaces.

Definition

Let F be a linear space with dual space E := F∗, and duality product
denoted as < e | f >= eT f ∈ R for f ∈ F and e ∈ E . We call F the
space of flow variables, and E = F∗ the space of effort variables. A
subspace D ⊂ F × E is a Dirac structure if < e | f >= 0 for all (f , e) ∈ D
and dimD = dimF .

For the definition of a switching port-Hamiltonian system consider a Dirac
structure D on the space of all flow and effort variables involved:

D ⊂ Fx × Ex ×FR × ER ×FP × EP ×FS × ES
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Switching port-Hamiltonian systems

Let s be the number of switches, then every subset π ⊂ {1, 2, . . . , s}
defines a switch configuration, according to

e iS = 0, i ∈ π, f jS = 0, j 6∈ π

We will say that in switch configuration π, for all i ∈ π the i -th switch is
closed, while for j /∈ π the j-th switch is open.
For each fixed switch configuration π this leads to the following Dirac
structure Dπ on the restricted space of flows and efforts
Fx × Ex ×FR × ER ×FP × EP :

Dπ = {(fx , ex , fR , eR , fP , eP ) | ∃fS ∈ FS , eS ∈ ES

such that e iS = 0, i ∈ π, f jS = 0, j 6∈ π, and

((fx , ex , fR , eR , fP , eP , fS , eS ) ∈ D}
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Switching port-Hamiltonian systems

Let H : X → R denote the total energy at the energy-storage elements
with state variables x = (x1, · · · , xn); then set

ẋ = −fx , ex =
∂H

∂x
(x)

The constitutive relations for the linear resistive elements are given as

fR = −ReR , R = RT > 0, (4)

implying the power-dissipating property

eTR fR = −eTR ReR < 0, for all eR ∈ ER , eR 6= 0

The geometric definition of a switching port-Hamiltonian system is given
as follows:

Definition

The switching port-Hamiltonian system is given as

(−ẋ(t),
∂H

∂x
(x(t)),−ReR(t), eR(t), fP(t), eP (t)) ∈ Dπ

at all time instants t during which the system is in switch configuration π.
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The state transfer principle

A particular switch configuration π may entail algebraic constraints on the
state variables x , characterized by the constraint space

Cπ := {ex ∈ Ex | ∃fx , fR , eR , fP , eP , such that

(fx , ex , fR , eR , fP , eP) ∈ Dπ, fR = −ReR}

It follows that
∂H

∂x
(x(t)) ∈ Cπ

for all time instants t during which the system is in switch configuration π.
Hence if Cπ 6= Ex this imposes algebraic constraints on the state vector
x(t). Next, we define for each π the jump space

Jπ := {fx | (fx , 0, 0, 0, 0, 0) ∈ Dπ}

Theorem

Jπ = C⊥

π
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The state transfer principle

Definition (State transfer principle)

Consider the state x− of a switching port-Hamiltonian system at a
switching time where the switch configuration of the system changes into
π. Suppose x− is not satisfying the algebraic constraints corresponding to
π, that is

∂H

∂x
(x−) 6∈ Cπ

Then the new state x+ just after the switching time satisfies

x+ − x− ∈ Jπ,
∂H

∂x
(x+) ∈ Cπ

This means that at this switching time an instantaneous jump from x− to
x+ with xtransfer := x+ − x− ∈ Jπ will take place, in such a manner that
∂H
∂x

(x+) ∈ Cπ.
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The state transfer principle

Note that the jump space consists of all flow vectors fx that may be added
to the present flow vector corresponding to a certain effort vector at the
energy storage and certain flow and effort vectors at the resistive elements
and external ports, while remaining in the Dirac structure Dπ, without
changing these other effort and flow vectors. The jump space Jπ thus
corresponds to a particular subset of conservation laws, and the state
transfer principle proclaims that the discontinuous change in the state
vector is an impulsive motion satisfying this particular set of conservation
laws.
Specialized to switching electrical circuits the state transfer principle is a
formalization of the classical conservation of charge and flux principle.

Theorem

Let H be a convex function. Then for any x− and x+ satisfying the state
transfer principle

H(x+) ≤ H(x−)

and the resulting system with resets is passive.

Arjan van der Schaft () Bisimulation Theory for Multi-Modal Physical SystemsCPS Workshop, 21-10-2012 39 / 42



Selected references

Outline

1 The CPS context

2 Bisimulation of linear DAE systems

3 Bisimulation of hybrid systems

4 Compositional analysis

5 Switching port-Hamiltonian systems

6 The state transfer principle

7 Selected references

Arjan van der Schaft () Bisimulation Theory for Multi-Modal Physical SystemsCPS Workshop, 21-10-2012 40 / 42



Selected references

Selected references

• F. Kerber, A.J. van der Schaft, ”Compositional analysis for linear
systems”, Systems & Control Letters, 59(10): 645–653, 2010.

• F. Kerber, A.J. van der Schaft, ”Compositional properties of
passivity”, 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC) Orlando, FL, USA,
December 12-15, pp. 4628–4633, 2011.

• F. Kerber, A.J. van der Schaft, ”Compositional analysis for linear
control systems”, pp. 21–30 in Proceedings of the 13th ACM
international Conference on Hybrid Systems: Computation and
Control (Stockholm, Sweden, April 12 - 15, 2010). HSCC ’10. ACM,
New York, NY, 2010.

• A.J. van der Schaft, M.K. Camlibel, ”A state transfer principle for
switching port-Hamiltonian systems”, pp. 45–50 in Proc. 48th IEEE
Conf. on Decision and Control, Shanghai, China, December 16-18,
2009.

Arjan van der Schaft () Bisimulation Theory for Multi-Modal Physical SystemsCPS Workshop, 21-10-2012 41 / 42



Selected references

• F. Kerber, A.J. van der Schaft, ”Compositional and assume-guarantee
reasoning for switching linear systems”, pp. 328–333 in Proc. 3rd
IFAC Conference on Analysis and Design of Hybrid Systems,
Zaragoza, Spain, September 16-18, 2009.

• G. Pola, A.J. van der Schaft, M.D. Di Benedetto, ”Equivalence of
switching linear systems by bisimulation”, International Journal of
Control, 79, pp.74–92, 2006.

• A.J. van der Schaft, “Equivalence of dynamical systems by
bisimulation”, IEEE Transactions on Automatic Control, 49, pp.
2160–2172, 2004.

• A.J. van der Schaft, “Bisimulation of dynamical systems”, in Hybrid
Systems: Computation and Control, Eds. R. Alur, G.J. Pappas,
Lecture Notes in Computer Science 2293, pp. 555–569, Springer,
2004.

• A.J. van der Schaft, “Equivalence of hybrid dynamical systems”,
Proceedings of the Sixteenth International Symposium on
Mathematical Theory of Networks and Systems (MTNS2004),
Leuven, Belgium, July 5–9, 2004.

Arjan van der Schaft () Bisimulation Theory for Multi-Modal Physical SystemsCPS Workshop, 21-10-2012 42 / 42


