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Adversary Models
= (Crash Adversary

Choose a time to “crash” the node 6

= States of the node remain unchanged after the “crash” event
= Malicious Adversary l‘

Can change the state values arbitrarily
= Continuous trajectory in continuous time
= No limits in discrete time

Must convey the same information to all neighbors
» Local broadcast model

= Byzantine Adversary

Can convey different information to different
neighbors

= All adversaries are omniscient; i.e., know
Topology of the network
States and algorithms of the other nodes
Other adversaries (can collude)




V Scope of Threat Models

= F-Total Model

= Assumes at most F

adversaries in the entire
network

= F-Local Model

= Assumes at most ~
adversaries in the

neighborhood of any normal
node

= fFraction Local Model

= Assumes at most a fraction f
of adversaries in the
neighborhood of any normal
node

o 3-Total

e 3-Local

e (3/5)-Fraction
Local

o 2-Total
e 1-Local
e (1/4)-Fraction Local




E? Resilient Consensus

= Consensus protocols are fundamental for multi-agent
coordination

Time synchronization, rendezvous, formation control, distributed
estimation

= In distributed computing, consensus protocols robust to faulty
(Byzantine) processors have studied extensively
=  Approximate Agreement with Byzantine processors

Agreement: Decision values of any two processes within € each
other

Validity: Any decision value for a nonfaulty process is within the
range of initial values of the nonfaulty processes

Termination: All nonfaulty processes eventually decide

=  ConvergeApproxAgreement algorithm [D. Dolev et al.]
Uses sorting, reduction, and selection functions on multisets




V Variation of Byzantine Generals
Problem

Morale modeled by single real value x; for troop
= x;, >0, good morale —~ /-
= x; <0, bad morale =4 )(=5) =

Loyal s att t =
o Improve troop
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morale and reach e ET ol
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consensus on the level
of morale despite o
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Simulation Results

= Linear Consensus = Resilient Consensus

.................................................................................................................................................

.............................................................................................................................

.........................................................................................................................................

morale

............................................................................................................................................

.................................................................

------- Byzantine general vieenn Byzantine general
= = = | oyal generals = = = | oyal generals

i i —:rroom I i i i —:rrows T

15 2 25 3 35 4 o o5 1 15 2 25 3 35 4

t(s) t(s)
(a) LCP. (b) ARC-P.
wt)= Y (O-w®),  w&O= > () -w),
j€{Generals} j€{Generals}\{Extreme Morale}
Vi € {Troops} U {Loyal Generals} Vi € {Troops} U {Loyal Generals}

8



= Switched System
Ordinary Differential Equations (ODES)
Switching network topology

= Normal nodes have scalar state & integrator dynamics

:.Ci — U; = fi,a(t) (ta LA :C(A,i))
= Switched system model

TN = fa(t)(t7xN7:C(A,N)>7 33_/\/‘(0) < IRJV?z)a(t) el




Continuous-Time Resilient @
Asymptotic Consensus (CTRAC)
= Design a continuous-time consensus algorithm (control
law) that is resilient to adversaries:

Agreement Condition: States of the normal nodes asymptotically
align to a common limit

1L € R such that lim z;(t) =L, Vie N

t— 00

Safety Condition: The minimal interval containing the initial values
of the normal nodes is an invariant set

x;(t) € o = [mar(0), Mar(0)], Vt>0,Vie N
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Adversarial Resilient Consensus
Protocol (ARC-P)
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=  ARC-P with parameter F (or /')
= If d.(f) > 2F,(9)
» F.(t)=F if the parameter is F
= F. ()= |fd;(t)] if the parameter is f
= Otherwise, do nothing
= Only local information
= Low complexity
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V ARC-P2

= Weighted ARC-P with selective reduce (ARC-P2)

Parameter F(or f)
= F.(f)=F if the parameter is F
= F.(t)=|fd;(t)] ifthe parameter isf
Nonnegative, piecewise continuous, bounded weights
0 < a <wH(t) < B ifjis aneighbor at time ¢
" w(p(t) =0 otherwise
Compare values of neighbors with own value x, (7)
= Remove (up to) F;(r) values strictly larger than x, (¢)
= Remove (up to) F,(¢) values strictly smaller than x, (¢)

Let R;(t) denote the set of nodes whose values are
removed

Update as z;(t) = Z W(;,4) () (CU(j,z') (t) — xz(t»
JEN (H)\ R4 (t)
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Complete Networks

Vv

= ARC-P satisfies the agreement
condition

= The convergence to the
agreement space is exponential
with rate m =n — 2F

= Symmetry of the complete network

= ARC-P satisfies the safety
(validity) condition

= The minimal hypercube containing
the initial values is positively
invariant

VAN
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Simulation Results
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High-Degree Networks

= D,eT,,,CT,if adversaries = D €1,, C T, if adversaries
are malicious are Byzantine

Uy p={Dy € I'y,|M1p OR M2p holds} I'pp={Dy €I'y|Blr OR B2p holds}

where where

My : 5in(Dk) > |_n/2J 4+ F Blp : 6"(Dy)> n/2+ |3F/2] niseven, F odd;
. " b= In/2| + [3F/2] otherwise.

MQF.HSQV,|S‘ > 2F 4+ 1,

such that d{"* =n—1,Vie S B2p : 35S CV,|S| > 3F + 1,
such that d{"* =n—1,Vie S
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E’ Safety and Agreement

= Suppose each cooperative agent uses ARC-P
with parameter F and there are at most

F"malicious agents with D, €T,
F Byzantine agents with D, €T

= Then the safety condition is satisfied

= Then x, globally exponentially converges to the
agreement space.

= The rate of convergence is bounded by
dist(z.(t), A) < 24/p dist(z.(0), A)e™"
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V Lyapunov Analysis

= Properties of U(z.) = géag{a?k} Helgl{%}

U 2> 0 with (x,) =0 forx, € 4; (x,) > 0 otherwise
Globally Lipschitz;
Strictly increasing away from 4:

= U(y,) >W(y, whenever dist(y,,4) > dist(y,,4)
Radially unbounded away from 4:

= J(y) — 00 as dist(y,4) — 00
Not everywhere differentiable

=  Upper-directional derivative
\Ij C h c,o cr&a _\Ij C
DT (z.,x,) = limsup (Ze + Pfe,o(t)(Te) Ta)) ()
h—0+ h
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V Robust Network Topologies

Nodes in X have value 0 and nodes in Y have value 1
ARC-P2 with parameter F=2

No consensus, even with no adversaries

(|n/2] + F — 1 )-connected, (in this case, 5-connected)

We need a new graph theoretic property to capture
local redundancy

[Collaboration with Haotian Zhang and Shreyas Sundaram]
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E’ r-Edge Reachable & r-Robust

= A nonempty subset S of nodes of a

nonempty digraph is r-edge reachable
if there exists i ¢ S such that

N\ S| =7

S, is 3-edge reachable
S, is 5-edge reachable
S, is 5-edge reachable

= A nonempty, nontrivial digraph D=(V, E)
is r-robust if for every pair of nonempty,
disjoint subsets of V, at least one of the
subsets is r-edge reachable
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(r,s)-Edge Reachable

Q 4 1
e\ [N [
= A nonempty subset S of nodes of a nonempty digraph is (r,s)-

edge reachable if there are at least s nodes in S with at /east r
neighbors outside of S, where r,s >0

Given Xg = {i € S: IN®\ S| > r}, then |Xs| > s

- S

S, is (4,2)-edge reachable
S, is (5,1)-edge reachable
S; is (5,1)-edge reachable 4 <\ e

8
4

1
S, is (3,3)-ed habl S
iS edge reachable "?.“’
3
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V (r,s)-Robustness

= A nonempty, nontrivial digraph is D=(V, E) on n nodes is
(r,s)-robust with » >0, n >s > 1, if for every pair of
nonempty, disjoint subsets S, and S, of 7, such that S, is

(r.s, )-edge reachable with s,, maximal for k£ €{1,2}, then at
least one of the following holds

Sr,l +Sr,2 2 S
Sr,l - |S1|

Sr,2 - |S2|

(2,s)-robust for n=9 >s>1
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CTRAC Time-Invariant Network: &B
ARC-P2 with parameter F (or f)

Crash & Malicious F-Total (F+1,F+1)-robust (F+1,F+1)-robust!
Crash & Malicious F-Local (F+1,F+1)-robust (2F+1)-robust
Crash & Malicious  f-Fraction f-fraction robust p-fraction robust, where 2f < p <1
local
Byzantine F-Total &  Normal Network is (F+1)-robust Normal Network is (F+1)-robust
F-Local
Byzantine f-Fraction Normal Network is f-robust Normal Network is p-robust where p > f
local

= Normal network is the network induced by the normal nodes

I Requires additional assumption of uniformly continuous malicious agent trajectories -



CTRAC Time-Varying Network: &B
ARC-P2 and parameter £ (or /)

=  Assume there exists a minimum dwell time ¢

= Assume there exists time ¢, after which the network topologies
always belong to the class 'of robust networks given below

Crash & Malicious F-Total (F+1,F+1)-robust
Crash & Malicious F-Local (2F+1)-robust
Crash & Malicious  f-Fraction p-fraction robust, where 2f < p <1
local
Byzantine F-Total & Normal Network is (F+1)-robust
F-Local
Byzantine f-Fraction =~ Normal Network is p-robust where p > f
local
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Resilient Synchronization in the
Presence of Adversaries

= Synchronization is a generalization of consensus

= Assume identical LTI systems (agents)

A weakly stable, (4,B) stabilizable, (4,C) detectable

= Problem: Design distributed control law so that there exists
open-loop trajectory

i‘o(t) — Axo(t)
such that

20(0) € SO,N, where Sy s is a known safe set that contains the Ho a
hyperrectangle

||z (t) —z0(t)|] = 0 as t = oo, for all normal agents
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V Resilient Synchronization Control @
Protocol

Assumptions » 4 weakly stable
e B, Cinvertible o [-total malicious model
o Uniformly cts malicious outputs e Network (F+1,F+1)-robust

ui(t) x.—Ax.+ Bu. yi(t)
- I 4 I >
yi:Cxi

S
S
Y
=
:EH
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V RAS with Full State Feedback

Assumptions o 4 weakly stable
e (A4,B) stabilizable

e [-total malicious model
 Full state feedback
e K stabilizing matrix such e Network (F+1,F+1)-robust
that 4+BK is stable e Uniformly cts malicious states &

controller states

Then, the dynamic control law with initially relaxed
controller state

— (A+ BK)n, — QERd&;™ (N L ® FrRQ Vsw.0) — [(FRQ™'85) ® Lym], wi>
U; = KT]’H

where $; = Z; — 1); achieves RAS
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V RAS with Output Feedback

Assumptions o 4 weakly stable

* (4,B) stabilizable e F-total malicious model
e (4,C) detectable

« K and H are stabilizing o Network (F+1,IF+1)-robust
and observer matrices, o Uniformly cts malicious observer
resp., such that 4+BK and states & controller states

A+HC are stable

Then, the dynamic control law with initially relaxed controller state
and Luenberger observer states in some hyper-rectangle within the
safe set given by

i = (A+ BK)n; + H(9i — yi)
— QBr()®F " (Nilla ® FR()Q™15w,0() — [(FRMQ™'5:(1) @ 14.], wi(t))

achieves RAS.
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V Algorithms to Determine
Robustness
= There are R(n) pairs of subsets to check, where

R(n) = zn: (Z) (261 — 1),

k=2
o n=|V;

e cach £ = 2,3,...,n in the sum is the size of the k-subsets of V =
{1,2,...,n}. Each k-subset of V is partitioned into exactly two nonempty
parts, S1 and So;

° (Z) is the number of k-subsets of {1,2,...,n};

o 2871 1 = S(k,?2) is a Stirling number of the 2nd kind, and is the number
of ways to partition a k-set into 2 nonempty unlabelled subsets (swapping
the labels S; and Ss results in the same pair).
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E? Construction of Robust Digraphs

= Let D=(V, E) be a nontrivial (r,s)-robust digraph .
Then, D’=(V'U {v,.}, EUE ), where v iSa new
node added to D and E _, is the directed edge set
related to v, is (r,s)-robust if

d, >r+s—1

Vnew —

Preferential-attachment model
Initial graph: K-
Ks is (3,2)-robust
Num edges / round: 4
End with (3,2)-robust graph
In fact, it is also 4-robust




Resilient Asymptotic
Consensus
Continuous-Time

Discrete-Time
= Synchronous
= Asynchronous
= Resilient Asymptotic
Synchronization
Continuous-time LTI
systems

= Network robustness
= Algorithms for

determining
robustness

E? Conclusions and Future Work -

Broader distributed
control and estimation
problems

Hierarchical multi-tier
networks comprised of
agents with various
security protections and
privileges

Optimize the action of
cooperative agents using
attack models that
represent adversary
strategies
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