

Institute for Software Integrated Systems Vanderbilt University

Resilient Cooperative Control of Cyber-Physical Systems

Xenofon Koutsoukos

(work with Heath LeBlanc)

Control of CPS

London Centre of University of Notre Dame

October 19, 2012

Outline

- Adversary models
- Resilient consensus
 - Complete networks
 - High-degree networks
 - Robust networks
- Resilient synchronization
- Conclusions and future work

Adversary Models

- Crash Adversary
 - Choose a time to "crash" the node
 - States of the node remain unchanged after the "crash" event
- Malicious Adversary
 - Can change the state values arbitrarily
 - Continuous trajectory in continuous time
 - No limits in discrete time
 - Must convey the same information to all neighbors
 - Local broadcast model
- Byzantine Adversary
 - Can convey different information to different neighbors
- All adversaries are omniscient; i.e., know
 - Topology of the network
 - States and algorithms of the other nodes
 - Other adversaries (can collude)

Scope of Threat Models

F-Total Model

- Assumes at most F adversaries in the entire network
- F-Local Model
 - Assumes at most F adversaries in the neighborhood of any normal node
- f-Fraction Local Model
 - Assumes at most a fraction f of adversaries in the neighborhood of any normal node

- 3-Total
- 3-Local
- (3/5)-Fraction Local

- 2-Total
- 1-Local
- (1/4)-Fraction Local

Resilient Consensus

- Consensus protocols are fundamental for multi-agent coordination
 - Time synchronization, rendezvous, formation control, distributed estimation
- In distributed computing, consensus protocols robust to faulty (Byzantine) processors have studied extensively
- Approximate Agreement with Byzantine processors
 - Agreement: Decision values of any two processes within ε each other
 - Validity: Any decision value for a nonfaulty process is within the range of initial values of the nonfaulty processes
 - *Termination:* All nonfaulty processes eventually decide
- ConvergeApproxAgreement algorithm [D. Dolev et al.]
 - Uses sorting, reduction, and selection functions on multisets

Variation of Byzantine Generals Problem

- Morale modeled by single real value x_i for troop i
 - $x_i > 0$, good morale
 - $x_i < 0$, bad morale
- Loyal generals attempt to improve troop morale and reach consensus on the level of morale despite Byzantine generals

Networked Multi-Agent System

- Switched System
 - Ordinary Differential Equations (ODEs)
 - Switching network topology
- Normal nodes have scalar state & integrator dynamics

$$\dot{x}_i = u_i = f_{i,\sigma(t)}(t, x_\mathcal{N}, x_{(\mathcal{A},i)})$$

Switched system model

$$\dot{x}_{\mathcal{N}} = f_{\sigma(t)}(t, x_{\mathcal{N}}, x_{(\mathcal{A}, \mathcal{N})}), \ x_{\mathcal{N}}(0) \in \mathbb{R}^{N}, \mathcal{D}_{\sigma(t)} \in \Gamma_{n}$$

Continuous-Time Resilient Asymptotic Consensus (CTRAC)

- Design a continuous-time consensus algorithm (control law) that is resilient to adversaries:
 - Agreement Condition: States of the normal nodes asymptotically align to a common limit

$$\exists L \in \mathbb{R} \text{ such that } \lim_{t \to \infty} x_i(t) = L, \quad \forall i \in \mathcal{N}$$

 Safety Condition: The minimal interval containing the initial values of the normal nodes is an invariant set

$$x_i(t) \in \mathcal{I}_0 = [m_{\mathcal{N}}(0), M_{\mathcal{N}}(0)], \quad \forall t \ge 0, \forall i \in \mathcal{N}$$

Adversarial Resilient Consensus Protocol (ARC-P) $x_i(t)$ $\hat{x}_i(t) = u_i(t)$

• ARC-P with parameter F (or f)

- If $d_i(t) \ge 2F_i(t)$
 - $F_i(t) = F$ if the parameter is F
 - $F_i(t) = \lfloor f d_i(t) \rfloor$ if the parameter is f
- Otherwise, do nothing
- Only local information
- Low complexity

- Weighted ARC-P with selective reduce (ARC-P2)
 - Parameter F (or f)
 - $F_i(t) = F$ if the parameter is F
 - $F_i(t) = \lfloor f d_i(t) \rfloor$ if the parameter is f
 - Nonnegative, piecewise continuous, bounded weights
 - $\bullet 0 < \alpha \leq w_{(j,i)}(t) \leq \beta$ if *j* is a neighbor at time *t*
 - $w_{(j,i)}(t) = 0$ otherwise
 - Compare values of neighbors with own value $x_i(t)$
 - Remove (up to) $F_i(t)$ values strictly larger than $x_i(t)$
 - Remove (up to) $F_i(t)$ values strictly smaller than $x_i(t)$
 - Let $\mathcal{R}_i(t)$ denote the set of nodes whose values are removed

• Update as
$$\dot{x}_i(t) = \sum_{j \in \mathcal{N}_i^{\text{in}}(t) \setminus \mathcal{R}_i(t)} w_{(j,i)}(t) \left(x_{(j,i)}(t) - x_i(t) \right)$$

Complete Networks

- ARC-P satisfies the agreement condition
- The convergence to the agreement space is exponential with rate m = n 2F
 - Symmetry of the complete network
- ARC-P satisfies the safety (validity) condition
 - The minimal hypercube containing the initial values is positively invariant

High-Degree Networks

- $D_s \in \Gamma_{M,F} \subset \Gamma_n$ if adversaries are *malicious*
- $D_s \in \Gamma_{B,F} \subset \Gamma_n$ if adversaries are *Byzantine*

 $\Gamma_{M,F} = \{ D_k \in \Gamma_n | M1_F \text{ OR } M2_F \text{ holds} \}$

where

 $M1_F : \delta^{\text{in}}(D_k) \ge \lfloor n/2 \rfloor + F$ $M2_F : \exists S \subseteq V, |S| \ge 2F + 1,$ such that $d_i^{out} = n - 1, \forall i \in S$

$$\Gamma_{B,F} = \{ D_k \in \Gamma_n | B1_F \text{ OR } B2_F \text{ holds} \}$$

where

 $B1_F: \delta^{\mathrm{in}}(D_k) \ge \begin{cases} n/2 + \lfloor 3F/2 \rfloor & n \text{ is even, } F \text{ odd;} \\ \lfloor n/2 \rfloor + \lceil 3F/2 \rceil & \text{otherwise.} \end{cases}$

 $B2_F : \exists S \subseteq V, |S| \ge 3F + 1,$ such that $d_i^{out} = n - 1, \forall i \in S$

- Suppose each cooperative agent uses ARC-P with parameter F and there are at most
 - *F* malicious agents with $D_{\sigma(t)} \in \Gamma_{M,F}$
 - *F* Byzantine agents with $D_{\sigma(t)} \in \Gamma_{B,F}$
- Then the safety condition is satisfied
- Then x_c globally exponentially converges to the agreement space.
- The rate of convergence is bounded by

 $\operatorname{dist}(x_c(t), A) \le 2\sqrt{p} \operatorname{dist}(x_c(0), A)e^{-t}$

Lyapunov Analysis

- Properties of $\Psi(x_c) = \max_{k \in V_c} \{x_k\} \min_{j \in V_c} \{x_j\}$
 - $\Psi \ge 0$ with $(x_c) = 0$ for $x_c \in A$; $(x_c) > 0$ otherwise
 - Globally Lipschitz;
 - Strictly increasing away from A:
 - $\Psi(y_1) > \Psi(y_2)$ whenever $dist(y_1,A) > dist(y_2,A)$
 - Radially unbounded away from A:
 - $\Psi(y) \rightarrow \infty$ as dist $(y,A) \rightarrow \infty$
 - Not everywhere differentiable
- Upper-directional derivative

$$D^{+}\Psi(x_{c}, x_{a}) = \limsup_{h \to 0^{+}} \frac{\Psi(x_{c} + hf_{c,\sigma(t)}(x_{c}, x_{a})) - \Psi(x_{c})}{h}$$

Robust Network Topologies

- Nodes in *X* have value 0 and nodes in *Y* have value 1
- ARC-P2 with parameter F=2
- No consensus, even with no adversaries
- $(\lfloor n/2 \rfloor + F 1)$ -connected, (in this case, 5-connected)
- We need a new graph theoretic property to capture local redundancy

 S_{γ}

A nonempty, nontrivial digraph D=(V, E)is *r*-robust if for every pair of nonempty, disjoint subsets of V_{i} , at least one of the subsets is *r*-edge reachable

 $|\mathcal{N}_i^{\mathrm{in}} \setminus S| \ge r$ • S_1 is 3-edge reachable

A nonempty subset S of nodes of a

- S₂ is 5-edge reachable
- S₃ is 5-edge reachable

r-Edge Reachable & r-Robust

- A nonempty subset S of nodes of a nonempty digraph is (r,s) edge reachable if there are at least s nodes in S with at least r neighbors outside of S, where r,s ≥ 0
 - Given $\mathcal{X}_S = \{i \in S : |\mathcal{N}_i^{\text{in}} \setminus S| \ge r\}$, then $|\mathcal{X}_S| \ge s$
 - S₁ is (3,3)-edge reachable
 S₂ is (4,2)-edge reachable
 S₂ is (5,1)-edge reachable
 - S₃ is (5,1)-edge reachable

- A nonempty, nontrivial digraph is D=(V, E) on n nodes is (r,s)-robust with r ≥ 0, n ≥ s ≥ 1, if for every pair of nonempty, disjoint subsets S₁ and S₂ of V, such that S_k is (r,s_{r,k})-edge reachable with s_{r,k} maximal for k ∈ {1,2}, then at least one of the following holds
 - $s_{r,1} + s_{r,2} \ge s$ $s_{r,1} = |S_1|$ $s_{r,2} = |S_2|$ $X = K_4$ (1) (1) (2) (3)

(2,*s*)-robust for $n=9 \ge s \ge 1$

CTRAC Time-Invariant Network: ARC-P2 with parameter *F* (or *f*)

Threat	Scope	Necessary	Sufficient
Crash & Malicious	F-Total	(F+1,F+1)-robust	(F+1,F+1)-robust ¹
Crash & Malicious	F-Local	(F+1,F+1)-robust	(2F+1)-robust
Crash & Malicious	<i>f</i> -Fraction local	<i>f</i> -fraction robust	<i>p</i> -fraction robust, where $2f$
Byzantine	F-Total & F-Local	Normal Network is (F+1)-robust	Normal Network is (F+1)-robust
Byzantine	<i>f</i> -Fraction local	Normal Network is <i>f</i> -robust	Normal Network is <i>p</i> -robust where $p \ge f$

Normal network is the network induced by the normal nodes

Variable Variation Structure Control Control

- Assume there exists a minimum dwell time τ
- Assume there exists time t₀ after which the network topologies always belong to the class of robust networks given below

Threat	Scope	Sufficient
Crash & Malicious	F-Total	(F+1,F+1)-robust
Crash & Malicious	F-Local	(2F+1)-robust
Crash & Malicious	<i>f</i> -Fraction local	<i>p</i> -fraction robust, where $2f$
Byzantine	F-Total & F-Local	Normal Network is (F+1)-robust
Byzantine	<i>f</i> -Fraction local	Normal Network is <i>p</i> -robust where $p > f$

Resilient Synchronization in the Presence of Adversaries

- Synchronization is a generalization of consensus
- Assume identical LTI systems (agents)

 $\dot{x}_i(t) = Ax_i(t) + Bu_i(t)$ $y_i(t) = Cx_i(t).$

- *A* weakly stable, (*A*,*B*) stabilizable, (*A*,*C*) detectable
- Problem: Design distributed control law so that there exists open-loop trajectory

$$\dot{x}_0(t) = Ax_0(t)$$

such that

- $x_0(0)\in S_{0,\mathcal{N}}$, where $S_{0,\mathcal{N}}$ is a known safe set that contains the $~H_{0,\mathcal{N}}$ hyperrectangle

•
$$||x_i(t) - x_0(t)|| \to 0 \text{ as } t \to \infty$$
, for all normal agents

Resilient Synchronization Control Protocol

Assumptions

- *B*, *C* invertible
- Uniformly cts malicious outputs

- A weakly stable
- *F*-total malicious model
- Network (*F*+1,*F*+1)-robust

 $u_i(t) = B'^{-1} E_R(t) \Phi_{0,F}^{d_i,m} \left(\tilde{N}_i [I_n \otimes (F_R(t)C'^{-1})] y_{(\mathcal{V},i)}(t) - [(F_R(t)C'^{-1}y_i(t)) \otimes 1_{d_i}], w_i(t) \right)$

RAS with Full State Feedback

Assumptions

- (*A*,*B*) stabilizable
- Full state feedback
- *K* stabilizing matrix such that *A*+*BK* is stable

- A weakly stable
- *F*-total malicious model
- Network (*F*+1,*F*+1)-robust
- Uniformly cts malicious states & controller states

Then, the dynamic control law with initially relaxed controller state

$$\dot{\eta}_{i} = (A + BK)\eta_{i} - QE_{R}\Phi_{0,F}^{d_{i},m} \left(\tilde{N}_{i}[I_{n} \otimes F_{R}Q^{-1}]s_{(\mathcal{V},i)} - [(F_{R}Q^{-1}s_{i}) \otimes 1_{d_{i}^{\mathrm{in}}}], w_{i}\right)$$
$$u_{i} = K\eta_{i},$$

where $s_j = x_j - \eta_j$ achieves RAS

RAS with Output Feedback

Assumptions

- (A,B) stabilizable
- (A,C) detectable
- *K* and *H* are stabilizing and observer matrices, resp., such that *A*+*BK* and *A*+*HC* are stable
- A weakly stable
- F-total malicious model
- Network (*F*+1,IF+1)-robust
- Uniformly cts malicious observer states & controller states

Then, the dynamic control law with initially relaxed controller state and Luenberger observer states in some hyper-rectangle within the safe set given by

$$\begin{split} \dot{\eta}_{i} &= (A + BK)\eta_{i} + H(\hat{y}_{i} - y_{i}) \\ &- QE_{R}(t)\Phi_{0,F}^{d_{i},m} \left(\tilde{N}_{i}[I_{n} \otimes F_{R}(t)Q^{-1}]\hat{s}_{(\mathcal{V},i)}(t) - [(F_{R}(t)Q^{-1}\hat{s}_{i}(t)) \otimes 1_{d_{i}}], w_{i}(t)\right) \\ \dot{\hat{x}}_{i} &= A\hat{x}_{i} + Bu_{i} + H(\hat{y}_{i} - y_{i}) \qquad u_{i} = K\eta_{i} \qquad \hat{y}_{i} = C\hat{x}_{i} \qquad \hat{s}_{j} = \hat{x}_{j} - \eta_{j} \\ &\text{achieves RAS.} \end{split}$$

Algorithms to Determine Robustness

• There are R(n) pairs of subsets to check, where

$$R(n) = \sum_{k=2}^{n} \binom{n}{k} \left(2^{k-1} - 1\right),$$

- $n = |\mathcal{V}|;$
- each k = 2, 3, ..., n in the sum is the size of the k-subsets of $\mathcal{V} = \{1, 2, ..., n\}$. Each k-subset of \mathcal{V} is partitioned into exactly two nonempty parts, \mathcal{S}_1 and \mathcal{S}_2 ;
- $\binom{n}{k}$ is the number of k-subsets of $\{1, 2, \ldots, n\}$;
- $2^{k-1} 1 = S(k, 2)$ is a Stirling number of the 2nd kind, and is the number of ways to partition a k-set into 2 nonempty unlabelled subsets (swapping the labels S_1 and S_2 results in the same pair).

Construction of Robust Digraphs

• Let D=(V, E) be a nontrivial (r,s)-robust digraph. Then, $D'=(V \cup \{v_{new}\}, E \cup E_{new})$, where v_{new} is a new node added to D and E_{new} is the directed edge set related to v_{new} , is (r,s)-robust if $d_{v_{new}}^{in} \ge r+s-1$

Preferential-attachment model

- Initial graph: K₅
- K₅ is (3,2)-robust
- Num edges / round: 4
- End with (3,2)-robust graph
- In fact, it is also 4-robust

Conclusions and Future Work

- Resilient Asymptotic Consensus
 - Continuous-Time
 - Discrete-Time
 - Synchronous
 - Asynchronous
- Resilient Asymptotic Synchronization
 - Continuous-time LTI systems
- Network robustness
- Algorithms for determining robustness

- Broader distributed control and estimation problems
- Hierarchical multi-tier networks comprised of agents with various security protections and privileges
- Optimize the action of cooperative agents using attack models that represent adversary strategies

Publications

- Asynchronous robust networks
 - Heath J. LeBlanc, Xenofon Koutsoukos: Resilient Asymptotic Consensus in Asynchronous Robust Networks. Allerton Conference on Communication, Control, and Computing. Monticello, IL. October, 2012.
- Discrete-time robust networks
 - Heath J. LeBlanc, Haotian Zhang, Shreyas Sundaram, Xenofon Koutsoukos: Consensus of Multi-Agent Networks in the Presence of Adversaries Using Only Local Information. Conference on High Confidence Networked Systems (*HiCoNS 2012*), Beijing. China. April, 2012. pp. 1–10.
- High-degree networks
 - Heath J. LeBlanc, Xenofon Koutsoukos: Low Complexity Resilient Consensus in Networked Multi-Agent Systems with Adversaries. Hybrid Systems: Computation and Control (*HSCC* 2012). Beijing, China. April, 2012. pp. 5–14. Honorable Mention for Best Paper Award.
- Complete networks
 - Heath J. LeBlanc, Xenofon Koutsoukos: Consensus in Networked Multi-Agent Systems with Adversaries. Hybrid Systems: Computation and Control (*HSCC 2011*), Chicago, IL. April, 2011. pp. 281–290.
- Overall approach
 - Heath J. LeBlanc, Resilient Cooperative Control of Networked Multi-Agent Systems, PhD Thesis, Department of EECS, Vanderbilt University, August 2012.