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http://cyberphysicalsystems.org

•"Cyber-Physical Systems (CPS) are integrations of 
computation, networking, and physical processes. 
Embedded computers and networks monitor and control 
the physical processes, with feedback loops where 
physical processes affect computations and vice 
versa...The technology builds on the older (but still very 
young) discipline of embedded systems, computers and 
software embedded in devices whose principle mission is 
not computation, such as cars, toys, medical devices, and 
scientific instruments."

http://cyberphysicalsystems.org
http://cyberphysicalsystems.org




CDC 2012 - Papers on “Networks”



CDC 2012 - Papers on “Computation”



CDC 2012 - Papers on “Embedded Systems”



CDC 2012 - Papers on “Real-time Systems”



Embedded Optimization (Optimal Control / 
Estimation / DSP) for Cyber-Physical Systems



Applications for Embedded Optimization (Optimal 
Control / Estimation / DSP)



Computing and Cyber-Physical Systems

“All too often, today’s students use 
laptop [or desktop] computers to 
perform their computing, which 
shields them from dealing with any of 
the physical constraints they will 
face in the real world. This approach 
is akin to trying to learn skiing 
while standing comfortably in the 
après ski lounge.” 

Wolf, Cyber-Physical Systems, Computer, 2009.



Challenges for Cyber-Physical Systems

•Cost

•Energy

•Speed

•Reliability 

•Predictability / real-time (fast is not equal to real-time)

Number representation (e.g. fixed/floating-point, #bits) 
has a major impact on the design



Size is Very Important in Microprocessor Design

Die area = 1
Working = 64

Die area = 4
Working = 4

Cost per die = f(areax),  x∈[2,4]



Computational Resources for an Adder

Number 
representation

Registers/Flip-
Flops (FFs)

Latency/delay 
(clock cycles)

double floating-point
52-bit mantissa 1046 14

single floating-point
23-bit mantissa 557 11

fixed-point 
53 bits 53 1

fixed-point
24 bits 24 1

Xilinx Virtex-7 XT 1140 FPGA: 

Cheap and low power processors often only have fixed-point



Dynamic Optimization

Discretized and approximated by finite-dimensional NLP:
min
✓

V (✓)

min
x(·),u(·),p

J(y(·), x(·), u(·), p)

F (y(t), ẋ(t), x(t), u(t), p, t) = 0, 8t 2 [t0, tf )

G(y(t), ẋ(t), x(t), u(t), p, t)  0, 8t 2 [t0, tf )

f(✓) = 0

g(✓)  0

✓ 2 Rn, f : Rn ! Rm, g : Rn ! Rp



Fixed-Point Arithmetic



Floating-Point Arithmetic



Fixed-Point Arithmetic



Challenges for Fixed-Point Arithmetic

•Number of bits for integer and fractional part?

•Determine worst-case peak values

•Optimization algorithms are nonlinear and recursive

•Search direction most computationally critical part:

•Iterative linear solvers preferred: CG, MINRES, GMRES

A⇠ = b



Lanczos Algorithm (Kernel of CG/MINRES)
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Evolution of Variables in Primal-dual Interior Point
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Theorem (Avoiding overflow in fixed-point)
All variables in Lanczos algorithm are between -2 and 2

On-line Diagonal Preconditioner / Scaler

⇠ = S�
1
2 

Skk :=
NX

j=1

|Akj |

Proof: Proc. IEEE Conference on Decision and Control 2012

(1-norm of row k)

S�
1
2AS�

1
2 = S�

1
2 b , bA = bb ) ⇢

⇣
bA
⌘
 1

A⇠ = b, A = A0



Evolution of Variables in Primal-dual Interior Point
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Trade-offs on an FPGA (same accuracy)

Xilinx Virtex-7 XT 1140 with matrices from the optimal control of a Boeing 747
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Low-Precision Arithmetic



Optimal Control in Low Precision Arithmetic
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Sampled-data Representation in Shift Form

ẋ(t) = Acx(t) +Bcu(t)

xk+1 = Asxk +Bsuk

As := eAch = I +Ach+
(Ach)2

2!
+

(Ach)3
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+ . . .

Sample period h and piecewise constant input (ZOH):

Exact solution/discrete-time model to compute 

lim
kAchk!0

As = I, lim
kAchk!0

Bs = 0

xk := x(kh)

u(t) = u(kh) =: uk, 8t 2 [kh, kh+ h)
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(xk+1 � xk)/h = (Asxk +Bsuk � xk)/h
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Sampled-data Representation in Delta Form

Middleton and Goodwin (IEEE TAC, 1986):

(xk+1 � xk)/h = (Asxk +Bsuk � xk)/h



Sampled-data Representation in Delta Form

Middleton and Goodwin (IEEE TAC, 1986):
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Sampled-data Representation in Delta Form

Middleton and Goodwin (IEEE TAC, 1986):

xk+1 � xk

h

= A�xk +B�uk



Sampled-data Representation in Delta Form

Middleton and Goodwin (IEEE TAC, 1986):

xk+1 � xk

h

= A�xk +B�uk
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A2
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Equivalent to shift form in infinite precision arithmetic
Different from shift form in finite precision arithmetic
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B� = Bc



Optimization Problem Using Shift Form

x0 = x̂,

xk+1 = Asxk +Bsuk, 8k 2 {0, 1, . . . , N � 1}
Jxk + Euk  d, 8k 2 {0, 1, . . . , N � 1}
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•Solve linearized KKT system (Rao, Wright, Rawlings; 
JOTA, 1998):

•Interleave search direction variables:

•Block elimination results in Riccati recursions:

Solving the Optimization Problem

A⇠ = b
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⇥
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Data Dependencies in Riccati Recursion

Delta Shift

Addition/Subtraction

Multiplication
Solve linear system

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Same amount of multipliers, adders and 
computational delay for a custom circuit, e.g. FPGA



Optimal Control in Low Precision Arithmetic
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Conclusions

•Number representation major factor that determines cost, 
energy, computational delay and accuracy

•Fixed-point: Precondition to get tight analytical bounds 
on variables in Lanczos algorithm to avoid overflow

•Low precision: Sampled-data model and optimization 
method crucial to successful implementation

•Co-design algorithm and hardware to use “just the right 
amount” of computational resources



Open Research Questions

•Other sampled-data and number representations?

•Nonlinear systems? 

•Which algorithms map easily to low precision, fixed-point 
or other number representations?

•A priori guarantees on accuracy, closed-loop stability, 
robustness and performance?

•Need control + optimization + numerics + computing


