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http://cyberphysicalsystems.org

¢ "Cyber-Physical Systems (CPS) are integrations of
computation, networking, and physical processes.
Embedded computers and networks monitor and control
the physical processes, with feedback loops where
physical processes affect computations and vice
versa... [ he technology builds on the older (but still very
young) discipline of embedded systems, computers anc
software embedded in devices whose principle mission IS
not computation, such as cars, toys, medical devices, and
scientific instruments.”
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Communication networks

Network analysis and control

Networked control systems

Sensor networks

Transportation networks

CDC 2012 - Papers on “Networks”

TuAO01.6, TuA04.1, TuB01.2, TuB01.6, TuC02.3, TuC03.1, TuC04.2, WeA04.6, WeA17.4, WeB14.4

MoA07.1, MoA07.6, MoB01.6, MoB11.1, ThA01.3, ThA01.4, ThA01.5, ThA01.7, ThA03.4, ThA06.2, ThAQ7.3,

WeB01.5, WeB01.6, WeB07.3, WeB09.5, WeB11.4, WeC01.4, WeC01.6
MoAO01.1, MoA01.2, MoA01.3, MoA01.4, MoA01.5, MoAO01.6, MoA01.7, MoA02.2, MoA02.3, MoA02.4, MoAD2.7,

TuB17.1, TuC01.1, TuC01.2, TuC01.3, TuC01.4, TuC01.5, TuC02.3, TuC02.4, TuC04.3, TuC11.1, TuC17.5, WeA01.2,
WeA03.5, WeA04.6, WeA06.2, WeA07.3, WeB01.2, WeB01.5, WeB03.1, WeB03.3, WeB07.2, WeB07.4, WeB07.6,

TuC02.6, TuC04.2, TuC04.3, TuC06.4, TuC14.1, TuC14.5, WeA03.1, WeA05.3, WeB07.1, WeB14.5, WeC01.2,
WeC01.4, WeC07.4, WeC07.5

MoA07.2, MoA07.5, MoA12.1, MoA12.6, ThB12.6, ThB16.1, ThB16.2, ThC07.1, WeC14.1




CDC 2012 - Papers on “Computation”

Computational methods MoA10.3, MoA15.1, MoA15.2, MoA15.3, MoA15.4, MoA15.5, MoA15.6, MoA15.7, MoA16.5, MoA17.7, MoB07.3, MoB15.5, MoC05.4, MoC15.2,
MoC16.3, ThA0S5.1, ThA12.3, ThA14.6, ThA17.7, ThB06.4, ThC06.4, ThC13.2, ThC14.1, ThC14.5, TuA02.5, TuA06.5, TuB09.1, TuB09.5,
TuC05.3, TuC05.6, TuC06.2, TuC15.3, WeA01.6, WeA04.4, WeA10.7, WeA13.3, WeA17.2, WeB10.3, WeC09.2, WeC10.2, WeC14.4, WeC17.5

Computer networks MoA10.6, MoA10.7, TuC14.1, WeA17.4, WeB14.2, WeC01.1, WeC01.4, WeC01.5




DC 2012 -

Papers on “

—mbedded Systems”



DC 2012 -

Papers on “

Real-time Systems”



—~mbedded Opiti

—stimation /

DS

P) for Cyber-

mization (Opti

D

mal Control /

nysical Systems



Applications for Embedded Optimization (Optimal
Control / Estimation / DSP)




Computing and Cyber-Physical Systems

“All too often, today’s students use
laptop |[or desktop| computers to
perform their computing, which
shields them from dealing witfr
the physmal constraints they will

'S akin to trying to Iearn skiing

while standing comfortably in the * D
- - yy _g -
apres ski lounge. tih #

Wolf, Cyber-Physical Systems, Computer, 2009.



Challenges for Cyber-Physical Systems

e Cost

® Energy
® Speed

o Reliablility

e Predictability / real-time (fast is not equal to real-time)

Number representation (e.g. fixed/floating-point, #bits)
has a major impact on the design




Size is Very Important in Microprocessor Design

Jie area = 1 Jie area =4
Working = 64 Working = 4

Cost per die = flareaX), xe<[2,4]




Computational Resources for an Adder

Xilinx Virtex-7 XT 1140 FPGA:

Number Registers/Flip- | Latency/delay
representation Flops (FFs) (clock cycles)

double floating-point
52-bit mantissa

single floating-point

23-bit mantissa

fixed-point
53 bits

fixed-point
24 bits

Cheap and low power processors often only have fixed-point



Dynamic Optimization

F(y(t),x’(t),x(t),u(t),p, t) =0, Vte :thtf)
G(y(t), &(t), z(t), u(t),p,t) <0, Vi€ [to,lf)

Discretized and approximated by finite-dimensional NLP:

m@in V(0)

f(0) =0
g(0) <0

g cR” f:R"—R"™, g:R" > R"



Fixed-Point Arithmetic



Floating-Point Arithmetic

round-off

OlOlOlOOOlOOlllllermr time




Fixed-Point Arithmetic

overflow round-off

220001010/ 110[0[0[1 /001|111 1T =™ |time

overflow round-off

= [0[o[1]0]0[1[0[0[1[1/0]0[1[1[0[0[0] =™ ¥




Challenges for Fixed-Point Arithmetic

e Number of bits for integer and fractional part”
e Determine worst-case peak values
e Optimization algorithms are nonlinear and recursive
e Search direction most computationally critical part:
AE =D

e [terative linear solvers preferred: CG, MINRES, GMRES



Lanczos Algorithm (Kernel of CG/MINRES)

a; P 0
Q;AQ; =T, := b a2
. Bi—a
i 0 Bi—1 0 72

Given ¢; such that ||q1]]2 = 1 and an initial value gy :=1
for =1 to 1,,4, dO

L. gi < ngl

2. Z; Aqi

3. O — qiTzi

4. Gip1 < 2 — aq; — Bi—1¢i—1

5. Bi + ||qi+1l2
end for




Lanczos Algorithm (Kernel of CG/MINRES)

a; P 0
Q;AQ; =T, := b a2
. Bi—a
i 0 Bi—1 0 72

Given ¢; such that ||q1]]2 = 1 and an initial value gy :=1
for =1 to 1,,4, dO

L. gi < 5?1

2. Z; Aqi

3. e q! z;

4. qit1 < 2z —aqi — Pi—1Gi—1

5. Bi + ||qi+1l2
end for
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On-line Diagonal Preconditioner / Scaler

A =b, A=A

N
Sk := ) _ |Ak;| (1-norm of row k)

g=1

STIAS I =S Ib o A = b = o (K) <1

¢=S"2¢

Theorem (Avoiding overflow in fixed-point)
All variables in Lanczos algorithm are between -2 and 2

Proof. Proc. IEEE Conference on Decision and Control 2012
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Trade-offs on an FPGA (same accuracy)

1000
floatb2
:g 800|j8
S float23
5; 600 -
=
9 400—9E x 1
E o ’x,,/flxed53
200-°°°o e X%
1 I’le IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII B
©90000000 ... .. .. O i O i o 0.0
fixed29
O | | ]
0 20 40 60 80 100
faster % Registers (FFs) more

Xilinx Virtex-7 XT 1140 with matrices from the optimal control of a Boeing 747



L ow-Precision Arithmetic



Optimal Control in Low Precision Arithmetic

— — — 5 bits, shift

5 bits, delta

oF--/ -\ S N I 52 bits, shift

Mass-spring system with 3 masses (6 states) and 2 inputs, sample period = 10ms



Sampled-data

Representation in Shift Form

t(t) = Acx(t) + Bou(t)

Sample period h and piecewise constant input (ZOH):

u(t) =

u(kh) =:ug, Vt € |kh,kh+ h)

Exact solution/discrete-time model to compute zy := z(kh)

Tri1 = Asxr + Bsug

(Ach)*
2!

(Ach)?
3!

lim A, =1, lim By =0
[Ach||—0 |Ach||—0



Sampled-data

Representation in Shift Form

t(t) = Acx(t) + Bou(t)

Sample period h and piecewise constant input (ZOH):

u(t) =

u(kh) =:ug, Vt € |kh,kh+ h)

Exact solution/discrete-time model to compute zy := z(kh)

Tip+1 = AT + Bsuy, j
2 3
A, i=eh =T+ A_h- (A;?) | (AS?) .

lim A, =1, lim By =0
[Ach||—0 |Ach||—0



Sampled-data

Representation in Shift Form

t(t) = Acx(t) + Bou(t)

Sample period h and piecewise constant input (ZOH):

u(t) =

u(kh) =:ug, Vt € |kh,kh+ h)

Exact solution/discrete-time model to compute zy := z(kh)

[(.Cbk;_H —x)/h = (Asxr + Bsug — xk)/hj

(Ach)*
2!

(Ach)?
3!

lim A, =1, lim By =0
[Ach||—0 |Ach||—0



Sampled-data Representation in Delta Form

Middleton and Goodwin (IEEE TAC, 19806):

(xpa1 — x)/h = (Asxp + Bsur — xx)/h



Sampled-data Representation in Delta Form

Middleton and Goodwin (IEEE TAC, 19806):

Lk+1 — Lk _ (AS_I)CEk | BSUk

h h




Sampled-data Representation in Delta Form

Middleton and Goodwin (IEEE TAC, 19806):

Lk+1 — Lk
h

— Asxr + Bsug



Sampled-data Representation in Delta Form

Middleton and Goodwin (IEEE TAC, 19806):

X — L
l<:+1h k _ A(;xk —I-B(suk
A%h  A3h?
As = A, + — + — -
2! 3!

lim As = A., lim Bs = B.
|Ach||—0 |Ach||—0

Equivalent to shift form in infinite precision arithmetic
Different from shift form in finite precision arithmetic



Optimization Problem Using Shift Form

N—1
m@in Z Zk(xk,uk)
k=0
= [u{) Ty ouy xh - U4 xﬁ\,],
subject to
Lo = aAja
(@p41 = Aswp + Boug,) Vke{0,1,...,N -1

Jrp + Bup <d, Vke{0,1,...,N —1




Optimization Problem Using Shift Form

N—1

m@m Z gk (Qj‘k, uk)

k=0
/
0 := [u{) Ty ouy xh Un_1 wﬁ\,]
subject to
Lo = ia
[wkﬂ — A,z + BsukD vk €4{0,1,...,N —1
Jrp + Bup <d, Vke{0,1,...,N —1
a )
Of 1= ijﬂh_ = Asxi + Bsug

.

_/




Optimization

N—1

mln E ék ij,uk)

Problem Using

/ /
0 16 (@) 5t i () =

subject

(6

\_

Delta Form

-

.

560:3/\37
(5k:A5xk+B5uk,\ VkE{O,:_ A }
ZEk_|_1:£Ek—|—h5k,) VkE{O,:_ A }
Jrg + Bup <d, Vke{0,1,...,N —1}
p
X — X
O 1= k+1h i — Asxr + Bsug

_/




Optimization

N—1

mln E Zk xk,uk)

Problem Using

/ /
0 16 (@) = i (@) =

subject to

.CE():C;Z,

-

O = Asy + Bsuy,

Tht1 = Tk + h5k7)

Vk € {0,1,...
Vk € {0,1,...
Jrp + Bup <d, Vke{0,1,...

Delta Form

N —1}
N —1}
N —1}



Solving the Optimization Problem

e Solve linearized KKT system (Rao, Wright, Rawlings;
JOTA, 1998): A = b

¢ Interleave search direction variables:
&= [Au) Ay ASy AN, Az, - Azl
e Block elimination results in Riccatl recursions:

P. 1 =Qr_1+ P+ hQAngA5 -+ hA%Pk + hPLAg
—(Mj,_1 + h*A5P,Bs + hP,Bs)(Rj—1 + h*B5P,Bs) "
(M]_, + h*B;P,As + hB;P)



Data Dependencies In Riccatl Recursion

Stage 2

Stage 3

= Ey N
\ ﬁﬂ—#.: oA E
GERY 0+

Stage 4

i Delta \ \ ) \Shift\ \ ()"

Stage 5

Stage 6

AN \
N

Stage 7

Same amount of multipliers, adders and
computational delay for a custom circuit, e.g. FPGA



Optimal Control in Low Precision Arithmetic

— — — 5 bits, shift

5 bits, delta

oF--/ -\ S N I 52 bits, shift

Mass-spring system with 3 masses (6 states) and 2 inputs, sample period = 10ms



Conclusions

e Number representation major factor that determines cost,
energy, computational delay and accuracy

¢ Fixed-point: Precondition to get tight analytical bounds
on variables in Lanczos algorithm to avoid overflow

e| ow precision: Sampled-data model and optimization
method crucial to successful implementation

e Co-design algorithm and hardware to use “just the right
amount” of computational resources



Open Research Questions

e Other sampled-data and number representations??

e Nonlinear systems?

¢ \\Vhich algorithms map easily to low precision, fixed-point
or other number representations?

e A priori guarantees on accuracy, closed-loop stability,
robustness and performance”

e Need control + optimization + numerics + computing



