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CPS issues 
• Assuming exact knowledge of the components and their 

interconnections may not be reasonable. 

• Dynamic change. The physical part may cause the CPS to change. 
Links disappear. Modules stop operating. These are to be expected 
when we are interested in the whole life cycle of the system.  

• If the system was safe, verified to be safe, can we guarantee that it will 
still be? Can we do something about it? Is it resilient? High autonomy.

• If secure originally can we still guarantee that property? 

• Connections to linear programming, optimization. Simplex and 
sensitivity analysis.
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Approach
• Perhaps it is more reasonable to aim for staying in  operating regions. 

Operating envelope.
• Flight envelope. The pilot is not allowed to take certain actions that 

may stall the aircraft (Airbus). Flight envelope. y ( ) g p

• In DES supervisory control actions are allowed or not allowed to occur 
and so behavior is restricted

• Lyapunov stability implies that the states are bounded-asymptotic 
stability implies that the state will also go to the origin as time goes to 
infinity. Restrictions on behavior.

• Feedback interconnection of stable systems may not be stable. 
Switching among stable systems may lead to unstable systems.

• Is there any similar, energy like concept where guarantees can be 
given about properties in, say, feedback configurations? 
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Passivity and Symmetry in CPS
- In CPS, heterogeneity causes major challenges. In addition 
network uncertainties-time-varying delays, data rate limitations, 
packet losses. p

-Need to guarantee properties of networks of heterogeneous 
systems that dynamically expand and contract. 

-Need results that offer insight on how to do synthesis – how to 
grow the system to preserve certain  properties. 

We impose passivity constraints on the components and use- We impose passivity constraints on the components and use 
wave variables, and the design becomes insensitive to network 
effects. Stability and performance.  

- Symmetry.  
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Background on Passivity
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Definition of Passivity in Continuous-time

• Consider a continuous-time nonlinear dynamical system
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• This system is passive if there exists a continuous storage 
function V(x) ≥ 0 (for all x) such that 
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• When V(x) is continuously differentiable, it can be written as:
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Interconnections of Passive Systems

• One of the strengths of passivity is when systems are 
interconnected. Passive systems are stable and passivity is 
preserved in many practical interconnections. 

• For example, the negative feedback interconnection of two 
passive systems is passive.

• If u1→y1 and u2→y2 are passive then the mapping
is passive 
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• Note: the other internal mappings (u1→y2 and u2→y1 ) will be 
stable but may not be passive
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Other Interconnections

• The parallel interconnection of two passive systems is still 
passivep

• However, this isn’t true for the series connection of two systems

• For example, the series connection of any two systems that have 
90°of phase shift have a combined phase shift of 180°
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Dissipativity, conic systems, and 
passivity indices
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Definition of Dissipativity (CT)

• This concept generalizes passivity to allow for an arbitrary energy 
supply rate ω(u,y).

• A system is dissipative with respect to supply rate ω(u,y) if there 
exists a continuous storage function V(x) ≥ 0 such that 

for all t1, t2 and the input u(t) ϵ U. 
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• A special case of dissipativity is the QSR definition where the 
energy supply rate takes the following form:

• QSR dissipative systems are L2 stable when Q<0
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QSR Dissipativity (CT)
• Consider the feedback interconnection of G1 and G2

• G1 is QSR dissipative with Q1, S1, R1

• The feedback interconnection 

is stable if 
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• G2 is QSR dissipative with Q2, S2, R2
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• Other mappings (r1→y2 and r2→y1) are stable but may not be passive
• Large scale sytems (with multiple feedback connections) can be analyzed 

using QSR dissipativity to show stability of the entire system
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The output feedback 

Output Feedback Passivity Index

p
passivity index (OFP) is the 
largest gain that can be put 
in positive feedback with a 
system such that the 
interconnected system is 
passive.

Equivalent to the following dissipative inequality holding for G
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The input feed-forward

Input Feed-Forward Passivity Index

The input feed-forward 
passivity index (IFP) is the 
largest gain that can be put 
in a negative parallel 
interconnection with a 
system such that the 
interconnected system is 
passive.

Equivalent to the following dissipative inequality holding for G
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Simultaneous Indices

When applying both indices 
the physical interpretation 
as in the block diagram

Equivalent to the following dissipative inequality holding for G
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We can assess the stability of an interconnection using the 
indices for G and G

Stability

indices for G1 and G2

G1 has indices ρ1 and ν1

G2 has indices ρ2 and ν2

The interconnection is L2 
stable if the following matrix 
is positive definite
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Networked passive systems

17

Networked Systems

• Motivating Problem: The feedback interconnection of two passive 
systems is passive and stable. However, when the two are 
interconnected over a delayed network the result is not passive 
so stability is no longer guaranteed. How do we recover stability?

The systems G1 and G2 are interconnected over a network with time delays 
T1 and T2 18
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Stability of Networked Passive Systems

• One solution to interconnecting 
passive systems over a delayed 
network is to add an interface 
between the systems and the network

• The wave variable transformation 
forces the interconnection to meet the 
small gain theorem. Stability is 
guaranteed for arbitrarily large time 
delays

• The WVT is defined below

19

Passivity and CPS

1. A Passivity Measure Of Systems In Cascade Based On Passivity Indices

2 Passivity-Based Output Synchronization With Application To Output2. Passivity Based Output Synchronization With Application To Output 
Synchronization of Networked Euler-Lagrange Systems Subject to 
Nonholonomic Constraints

3. Event-Triggered Output Feedback Control for Networked Control Systems 
using Passivity

4. Output Synchronization of Passive Systems with Event-Driven 
Communication

5 Quantized Output Synchronization of Networked Passive Systems with5. Quantized Output Synchronization of Networked Passive Systems with 
Event-driven Communication
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Passivity and Dissipativity inPassivity and Dissipativity in 
Networked Switched Systems

21

Passivity for Switched Systems

• The notion of passivity has been 
defined for switched systems )(
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A switched system is passive if it meets the following conditions

1. Each subsystem i is passive when active:

2. Each subsystem i is dissipative w.r.t. ωj
i when inactive:
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3. There exists an input u so that the cross supply rates (ωj
i) are integrable on 

the infinite time interval. 
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[McCourt & Antsaklis 2010 ACC, 2010 CDC]
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QSR Dissipativity for Switched Systems

[McCourt &Antsaklis 2012 ACC]
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Stability of Networked Passive Systems

• When interconnecting passive discrete-
time switched systems over a networktime switched systems over a network, 
delays must be considered

• The transformation approach can be 
generalized to apply to switched systems

• The approach can compensate for time-
varying delays

• The wave variable transformation is 
defined below
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Models, Approximations and Passivity

• In the following passivity results on approximations that involve 
passivity indicesp y

• Modeling. Mathematical models and approximations.

• How do we determine stability, and other properties of physical 
systems? Models and physical systems.

• Passivity in software. How do we define it so it is useful and makes 
sense.

25

Passivity and QSR-dissipativity Analysis of a 
System and its Approximation
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- Motivation: tradeoff between model accuracy and tractability. 
- Examples: linearization; feedback linearization; model reduction...

Problem Statement 

p ; ;
- Principle: preserve some fundamental properties or features: 

passivity, stability, Hamiltonian structure...

- System Model: 

– view     as the system we are interested in and view     as an 
approximated model

– the error is given through       (maybe modeling, linearization...)

1Σ 2Σ

yΔ

Problem Statement contd

• Suppose the approximate 
model is: ISP/OSP/VSP 
(having an excess of(having an excess of 
passivity) or QSR dissipative

• Suppose the error between the 
two systems is small, i.e.

• The interested system:• The interested system:
– Passive?
– How passive?
– QSR dissipative?
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Main Results 1: ISP

• Input strictly passive:

– passivity level:

– passive:

Passivity and QSR-Dissipativity of a 
Nonlinear System and its Linearization
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Symmetry in Systems

• Symmetry: A basic feature of shapes and graphs indicating some• Symmetry: A basic feature of shapes and graphs, indicating some 
degree of repetition or regularity

– (Approximate) symmetry in characterizations of information structure
– (Approximately) identical dynamics of subsystems
– Invariance under group transformation e.g. rotational symmetry

• Why Symmetry?
– Decompose into lower dimensional systems with better 

understanding of system properties such as stability and 
controllability

– Construct symmetric large-scale systems without reducing 
performance if certain properties of low dimensional systems hold

31
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Cyclic Symmetry
and Heterarchies
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Theorem (Star-shaped Symmetry)
Consider a (Q, S, R) – dissipative system extended by m star-shaped 
symmetric (q s r) – dissipative subsystems The whole system is finite

Main Result (1)
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Theorem (Cyclic Symmetry)
Consider a (Q, S, R) – dissipative system extended by m cyclic symmetric 
(q s r) – dissipative subsystems The whole system is finite gain input-out

Main Result (2)

(q, s, r) – dissipative subsystems. The whole system is finite gain input-out 
stable if 
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The above stability condition is always satisfied. Also

Thus the system can be extended with infinite numbers of
subsystems without losing stability.
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Theorem (Star-shaped Symmetry for Passive Systems)
Consider a passive system extended by m star-shaped symmetric passive 
subsystems The whole system is finite gain input-output stable if

Main Result (4)
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Theorem (Cyclic Symmetry for Passive Systems)
Consider a passive system extended by m cyclic symmetric passive 
subsystems The whole system is finite gain input-output stable if

Main Result (5)
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- CPS, Distributed, Embedded, Networked Systems. Analog-
digital, large scale, life cycles, safety critical, end to end high-
confidence.

Concluding Remarks

- Models, robustness, fragility, resilience, adaptation.

- New ways of thinking needed to deal effectively with the CPS 
problems. New ways to determine research directions.

- Passivity/Dissipativity and Symmetry are promising

- Circuit theory and port controlled Hamiltonian systems. 

- Connections to Autonomy and Human in the Loop

41
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