Analysis and Control of Networked Embedded Systems

Basilica di Santa Maria di Collemaggio, 1287, L'Aquila

Maria Domenica Di Benedetto University of L'Aquila

Networked control systems

- Networked Control Systems (NCS) are spatially distributed systems where the communication among plants, sensors, actuators and controllers occurs in a shared communication network
- Many aspects of NCS have been investigated, in particular stability and stabilizability problems

Outline

- Part I: Symbolic Control Design of Nonlinear Networked Control Systems
 - Mathematical model of nonlinear NCS
 - Symbolic models for NCS
 - Symbolic control design of NCS
 - Efficient control design algorithms
- Part II: Modeling, Analysis and Co-Design of Wireless Multihop Control Networks (MCN)
 - Mathematical model of linear MCN implementing timetriggered communication protocols
 - Co-design for asymptotic stability and optimal control
 - Fault tolerant control via FDI methods

Part I: Symbolic Control Design of Nonlinear Networked Control Systems

Networked control systems: Our model

$$u(s\tau+t)=u(s\tau), \qquad \{\blacksquare x=f(x(t),u(t))x\in X\subseteq \mathbb{R}^{\uparrow} p_{\underline{x}}(0)\in X\downarrow Q\subseteq X\downarrow \subseteq \mathbb{R}^{\uparrow} m \}$$

$$t\in [0,\tau[,s\in \mathbb{N}\downarrow 0]$$

Correct-by-design controller synthesis

Correct-by-design embedded control software:

- 1. Construct a finite model $T^*(\Sigma)$ of the plant system Σ
- 2. Design a finite controller C that solves the specification S for $T^*(\Sigma)$
- 3. Design a controller C' for Σ on the basis of C

Advantages:

- Integration of software and hardware constraints in the control design of purely continuous processes
- Use of computer science techniques to address complex specifications

Correct-by-design controller synthesis

Correct-by-design controller synthesis for NCS

A Labelled Transition System (LTS) is a tuple

$$T = (Q, L, \longrightarrow, O, H)$$

where:

- Q is the set of states
- L is the set of labels
- \longrightarrow \subseteq Q × L × Q is the transition relation
- O is the set of outputs
- H: $Q \rightarrow O$ is the output function

We denote
$$(q,l,p) \in \longrightarrow by q \xrightarrow{l} p$$

T is said to be:

- symbolic/finite when Q and L are finite
- countable when Q and L are countable
- metric when O is a metric space

Nonlinear Networked control system as an LTS

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u <i>↓</i> 1	u <i>↓</i> 2	:					
Х	x(0)	χ (τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
	N √1 = 4			N √2 = 6							

Nonlinear Networked control systems as LTSs

$$(\mathsf{x}(0),\mathsf{x}(\tau),\mathsf{x}(2\tau),\mathsf{x}(3\tau)) \xrightarrow{\quad \mathbf{u} \downarrow \mathbf{1}} (\mathsf{x}(4\tau),\mathsf{x}(5\tau),\mathsf{x}(6\tau),\mathsf{x}(7\tau),\mathsf{x}(8\tau),\mathsf{x}(9\tau))$$

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u <i>↓</i> 1	u <i>↓</i> 2						
Х	x(0)	χ(τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
	N √1 = 4			N √2 = 6							

Nonlinear Networked control systems as LTSs

$$(x(0),x(\tau),x(2\tau),x(3\tau)) \xrightarrow{u \downarrow 1} (x(4\tau),x(5\tau),x(6\tau),x(7\tau),x(8\tau),x(9\tau))$$

$$=6) \qquad (N \downarrow 2)$$

$$(x(4\tau),x(5\tau),x(6\tau),x(7\tau)) \qquad (N \downarrow 2 = 4)$$

$$(x(4\tau),x(5\tau),x(6\tau),x(7\tau),x(8\tau)) \qquad (N \downarrow 2 = 5)$$

Denote by $T(\Sigma)$ the LTS associated with a NCS Σ

t	0	τ	2τ	3τ	4τ	5τ	6τ	7τ	8τ	9τ	
u	0	0	0	u <i>↓</i> 1	u <i>↓</i> 2						
Х	x(0)	χ(τ)	x(2τ)	x(3τ)	x(4τ)	x(5τ)	x(6τ)	x(7τ)	x(8τ)	x(9τ)	
	N √1 = 4			N √2 = 6							

Quantifying accuracy

[Pola, Tabuada, SICON-09]

Alternating approximate bisimulation

Given LTSs $T_i = (Q_i, A_i \times B_i, \longrightarrow_i, O_i, H_i)$ (i = 1,2) with $O_1 = O_2$, and a precision $\varepsilon > 0$, consider a relation

$$R \subseteq Q_1 \times Q_2$$

R is an <u>alternating approximate simulation relation</u> of T_1 by T_2 if for all $(q_1, q_2) \in R$

- $d(H_1(q_1), H_2(q_2)) \le \varepsilon$
- $\forall a_1 \exists a_2 \forall b_2 \exists b_1 \text{ such that}$ $q_1 \xrightarrow{(a_1,b_1)} p_1 \text{ and } q_2 \xrightarrow{(a_2,b_2)} p_1 \text{ and } (p_1, p_2) \in \mathbb{R}$

R is an alternating approximate bisimulation relation between T₁ and T₂ if

- \blacksquare R is an alternating approximate simulation relation of T₁ by T₂
- R-1 is an alternating approximate simulation relation of T₂ by T₁

 T_1 is $\underline{\varepsilon}$ -alternating simulated by T_2 , denoted $T_1 \leq \varepsilon T_2$, if $\pi|_{Q_1}(R) = Q_1$

 T_1 and T_2 are ε-alternating bisimilar, denoted T_1 X ε T_2 , if $\pi \mid_{Q}$ (R) = Q_1 and $\pi \mid_{Q_2}$ (R) = London CPS Workshop, October 20-21, 2012, University of Notre Dame London Centre

Symbolic models

Theorem [HSCC-2012] For any δ -GAS nonlinear NCS Σ with compact state and input spaces,

 $\forall \varepsilon > 0$ \exists symbolic transition system $T^*(\Sigma)$:

$$\mathsf{T}^*(\Sigma)$$
 $\bigotimes_{\epsilon} \Sigma$

Symbolic control design

Problem formulation:

Given a NCS Σ , a specification LTS S and a desired precision ϵ > 0, find a symbolic controller C such that:

- T(Σ) | μ C ≼ε S
- $T(\Sigma)$ | μ C is non-blocking

Specification LTS S

Networked Control System Σ

Symbolic control design

Solution:
$$C = Nb (T^*(Z) || \mu x S)$$

Drawback:

High computational complexity!

Efficient on-the-fly (off-line) algorithms that integrate the synthesis of C with the construction of $T^*(\Sigma)$ proposed in:

[Pola, Borri, Di Benedetto, IEEE-TAC-2012]

[Borri, Pola, Di Benedetto, IEEE-CDC-2012]

One academic example	Space complexity	Time complexity
Traditional approaches	2,759,580 data	5,442 sec
On-the-fly approach	48 data	13 sec

Part II: Modeling, Analysis and co-Design of Wireless Networked Control Systems

Multi-hop control network model

- Control signals sent to the plant via a controllability network
- Measured data sent to the controller via an observability network

A different level of abstraction

 Network perceived through aggregate performance variables: quantization, packet drops, variable delays and their effect on control system

Lose information at a lower level of abstraction

A different level of abstraction

- Network perceived through aggregate performance variables: quantization, packet drops, variable delays and their effect on control system
- Lose information at a lower level of abstraction
- Relate network non-idealities to network parameters: topology, transmission power, scheduling, routing:
 - Mathematical model of linear MCN implementing time-triggered communication protocols
 - Co-design for asymptotic stability and optimal control
 - Node failure and malicious intrusion detection, fault tolerant control

Network

WirelessHART MAC layer (scheduling)

- lacktriangle Time is divided in periodic frames, each divided in Π time slots, each of duration Δ
- To avoid interference, a periodic scheduling allows each node to transmit data only in a subset of time slots

WirelessHART network layer (multi-path routing)

- To each pair of nodes source-destination (v_S, v_D) is associated an acyclic graph that defines the set of allowed routing paths
- Redundancy in the routing paths

Multi-hop control networks

Centralized Controller, Relay Network: no data processing (acyclic graph)

Controller Network: linear data processing (cyclic weighted graph)

[Alur, D'Innocenzo, Johansson, Pappas, Weiss, IEEE-TAC-11]

[Pajic, Sundaram, Pappas, Mangharam, IEEE-TAC-11]

Centralized Controller, Relay Network: linear data processing (acyclic weighted graph)

[D'Innocenzo, Di Benedetto, Serra, IEEE-TAC, provisionally accepted, 2012]

Multi-hop control networks model

Communication scheduling nassigns transmission of nodes
 London CPS Workshop, October 20-21, 2012, University of Notre Dame London Centre

London CPS Workshop, October 20-21, 2012, University of Notre Dame London Centre

 $| v_1, v_2 | v_3, v_2 | v_2, v_u$ B_1 $B_1 w_{1,2} + B_3 w_{3,2}$ $\mathbf{W}_{1,2}$ V₂ V_1 **W**_{2,u} $\mathbf{W}_{\mathrm{c,1}}$ $W_{2,u}(B_1 w_{1,2} +$ $B_3 W_{3,2}$ W_{3,2} V_c V_u $\mathbf{W}_{4,y}$ $W_{c,3}$ $W_{3,4}$ V_3 V_4 B_3

Asymptotic stabilizability of a MCN

- Model the semantics of MCN by cascade of discrete time
 MIMO LTI systems, with sampling time equal to the frame duration

Theorem: A MCN is controllable if and only if:

- 1. (A,B) is controllable
- 2. At least one scheduled path connects controller and actuator (condition on network topology and on scheduling function $\eta \downarrow \mathcal{R}$)
- 3. No zero-pole cancelations (algebraic conditions on weight function WIR) [Smarra, D'Innocenzo, Di Benedetto, NecSys'12]

Transient response to unit-step: optimal L₂-norm co-design

[Smarra, D'Innocenzo, Di Benedetto, IEEE-CDC-12]

Fault tolerant stabilizability of a MCN

Let $F=2 \uparrow E \downarrow \mathcal{R} \cup E \downarrow \mathcal{O}$ be the set of all configurations of

Assumptions:

- No fault detection algorithms in the network protocol: only use input to and output from the MCN
- Failures are slow with respect to plant time constants

Problem 1: Guarantee existence of a stabilizing controller for the MCN dynamics M_f associated to any $f \in F$

[Di Benedetto, D'Innocenzo, Serra, IFAC World Congress, 2011]

Fault tolerant stabilizability of a MCN

Let $F=2 \uparrow E \downarrow \mathcal{R} \cup E \downarrow \mathcal{O}$ be the set of all configurations of

Assumptions:

- No fault detection algorithms in the network protocol: only use input to and output from the MCN
- Failures are slow with respect to plant time constants

Problem 2: Design a dynamical system (FDI) able to detect and isolate any $f \in F$ [D'Innocenzo, Di Benedetto, Serra, IEEE-CDC-ECC-11]

Conclusions

Part I

- Mathematical model of general class of nonlinear NCS
- Symbolic models for NCS
- Symbolic controllers for NCS
- Efficient control algorithms

Part II

- Mathematical framework for co-design of control networks implementing time-triggered protocols
- Relate properties of multi-hop control networks and network configuration (topology, scheduling and routing)
- Fault tolerant control:
 - Permanent failures and malicious attacks via FDI
 - Transient failures (packet losses): work in progress

HYCON2-EECI Graduate School on Control 2013

"Symbolic control design of Cyber-Physical systems"

29/04/2013 – 03/05/2013 Istanbul (Turkey)

www.eeci-institute.eu

Appendix A (1/1)

Given a NCS Σ define the LTS

$$T(\Sigma) = (Q \downarrow \tau, Q \downarrow 0, \tau, L \downarrow \tau, \longrightarrow \downarrow \tau, O \downarrow \tau, H \downarrow \tau)$$
 where:

- $Q \downarrow \tau \subseteq Q \downarrow 0 \cup Q \downarrow e$ where $Q \downarrow e \coloneqq UN = N \downarrow min \uparrow N \downarrow max <math>\cong Q \uparrow N$ and for any $q = (x \downarrow 1, x \downarrow 2, ..., x \downarrow N) \in Q \uparrow N, x \downarrow i + 1 = x(\tau, x \downarrow i, u \uparrow -)$, $i \in [1; N-2]$, and $x \downarrow N = x(\tau, x \downarrow N 1, u \uparrow +)$ for some control inputs $u \uparrow -$, $u \uparrow +$
- $Q \downarrow 0, \tau = Q \downarrow 0$
- $L \downarrow \tau = [U] \downarrow \mu \downarrow U$
- $q \uparrow 1$ $\boxed{\boldsymbol{x}} \not \downarrow \tau \downarrow \uparrow q \uparrow 2$ where, for some $N \downarrow 1$, $N \downarrow 2 \in [N \downarrow min; N \downarrow max]$ $x \downarrow i + 1 \uparrow 1 = \boldsymbol{x}(\tau, x \downarrow i \uparrow 1, u \downarrow 1 \uparrow -), i \in [1; N \downarrow 1 2]$ $x \downarrow N \uparrow 1 = \boldsymbol{x}(\tau, x \downarrow N \downarrow 1 1 \uparrow 1, u \downarrow 1 \uparrow +)$ $x \downarrow i + 1 \uparrow 2 = \boldsymbol{x}(\tau, x \downarrow i \uparrow 2, u \downarrow 2 \uparrow -), i \in [1; N \downarrow 2 2]$ $x \downarrow N \uparrow 2 = \boldsymbol{x}(\tau, x \downarrow N \downarrow 2 1 \uparrow 2, u \downarrow 2 \uparrow +)$ $u \downarrow 2 \uparrow = u \downarrow 1 \uparrow +$ $u \downarrow 2 \uparrow + = u$ $x \downarrow 1 \uparrow 2 = \boldsymbol{x}(\tau, x \downarrow N \downarrow 1, 1, u \downarrow 2 \uparrow -)$
- $O\downarrow\tau = X\downarrow\tau$
- $H\downarrow\tau$ is the identity function

Appendix B (1/4)

 $T(\Sigma)$ collects all the information of the NCS Σ available at the sensor, but it is not a symbolic model. We therefore propose a symbolic model by quantizing the state space X of the plant P

Given $x \times X = [x] \downarrow \mu \downarrow X$ $\times [x] \downarrow \mu \downarrow X$ be such that $|| x - [x] \downarrow \mu \downarrow X$ $|| \leq \mu \downarrow X$

Appendix B (2/4)

Define the system T*(Σ) = $(Q \downarrow *, Q \downarrow 0, *, L \downarrow *, \longrightarrow \downarrow *, O \downarrow *, H \downarrow *)$ where:

- $Q \downarrow * \subseteq [Q \downarrow 0 \cup Q \downarrow e] \downarrow \mu \downarrow x$ s.t. for any $q \uparrow * = (x \downarrow 1 \uparrow *, x \downarrow 2 \uparrow *, ..., x \downarrow N \uparrow *) \in Q \downarrow *, x \downarrow i + 1 \uparrow * = [\mathbf{x}(\tau, x \downarrow i \uparrow *, u \downarrow * \uparrow -)] \downarrow \mu \downarrow x$, $i \in [1; N-2]$, and $x \downarrow N \uparrow * = [\mathbf{x}(\tau, x \downarrow N) -1 \uparrow *, u \downarrow * \uparrow +)] \downarrow \mu \downarrow x$ for some $u \downarrow * \uparrow -, u \downarrow * \uparrow +$
- $Q\downarrow 0, * = [X\downarrow 0] \downarrow \mu \downarrow \chi$
- $\blacksquare L \downarrow * = \lceil U \rceil \downarrow \mu \downarrow u$

 $x \downarrow i + 1 \uparrow 2 = x(\tau, x \downarrow i \uparrow 2, u \downarrow 2 \uparrow -) \downarrow u \downarrow x$ irst International Conference on Systems and Computer Science, August 30th 2012, Lille, France

Appendix B (3/4)

Def [Angeli, IEEE-TAC-2002]

Given a nonlinear control system x = f(x, u), a smooth function

$$v: \mathbb{R} \ln x \mathbb{R} \ln x \mathbb{R} + \mathbb{R} \ln x \mathbb{R} \ln x \mathbb{R} + \mathbb{R} \ln x \mathbb{R} \ln x \mathbb{R} + \mathbb{R} + \mathbb{R} \ln x \mathbb{R} + \mathbb{R} + \mathbb{R} + \mathbb{R} \ln x \mathbb{R} + \mathbb{R} +$$

is said to be a δ -GAS Lyapunov function for P if there exist $\lambda \in \mathbb{R} \mathcal{T}+$ and K_{∞} functions α_1, α_2 such that, for any $x_1, x_2 \in \mathbb{R} \mathcal{T} n$ and any $u \in U$

1) $\alpha_1(||x_1-x_2||) \leq V(x_1,x_2) \leq \alpha_2(||x_1-x_2||)$;

2)
$$\partial V/\partial x \downarrow 1$$
 $f(x \downarrow 1, u) + \partial V/\partial x \downarrow 2$ $f(x \downarrow 2, u) \leq -\lambda V(x_1, x_2)$.

Theorem [Angeli, IEEE-TAC-2002]

A nonlinear control system X=f(x,u) is δ -GAS if it admits a δ -GAS Lyapunov

Appendix B (4/4)

Theorem 1 [HSCC-2012]

Consider the NCS Σ and suppose that the plant nonlinear control system P enjoys the following properties:

1. There exists a δ -GAS Lyapunov function for Σ , hence there exists $\mathcal{A} \in \mathbb{R} \mathcal{T} +$ s.t. for any $x_1, x_2 \in X$, and any $u \in U$

$$\partial V/\partial x I = f(xII, u) + \partial V/\partial x I = f(xII, u) \le -\lambda V(x_1, x_2)$$

2. There exists a K_{∞} function γ such that $V(x,x\uparrow) \leq V(x,x\uparrow) + \gamma(\|x'-x''\|)$ for every $x,x\uparrow$, $x'' \in X$.

Then for any desired precision $\epsilon > 0$, any sampling time $\tau > 0$, and any state quantization $\mu lx > 0$ such that

Appendix C (1/1)

How to capture interaction between the symbolic model and the symbolic controller?

Approximate parallel composition

Def [Tabuada, IEEE-TAC-2008]

Given $T_1 = (Q_1, L_1, \longrightarrow_1, O_1, H_1)$ and $T_2 = (Q_2, L_2, \longrightarrow_2, O_2, H_2)$, with $O_1 = O_2$, and a precision $\theta > 0$, the approximate composition of T_1 and T_2 is the system

$$T_1 \mid I_{\theta} T_2 = (Q, L, \longrightarrow, O, H)$$

where:

- $Q = \{(q_1, q_2) \in Q_1 \times Q_2 : d(H_1(q_1), H_2(q_2)) \le \theta\}$
- L= L₁ x L₂
- $(q_1,q_2) \xrightarrow{(l_1,l_2)} (q'_1, q'_2)$, if $q_1 \xrightarrow{l_1} q'_1$ and $q_2 \xrightarrow{l_2} q'_2$
- \bullet O = O₁
- $H(q_1,q_2) = H_1(q_1)$

Appendix D (1/5)

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu \mid \Sigma$
- 3. Compute the maximal robust non-blocking part Nb(C*) of C*

Appendix D (2/5)

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid | \mu_x S$
- 3. Compute the maximal robust non-blocking part Nb(C*) of C*

Appendix D (3/5)

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu \mid \Sigma$
- 3. Compute the maximal robust non-blocking part Nb(C*) of C*

Appendix D (4/5)

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid \mu_x S$
- 3. Compute the maximal relationship and Nb(C*) of C*

Appendix D (5/5)

- 1. Compute the symbolic model $T^*(\Sigma)$ of Σ
- 2. Compute the approximate parallel composition $C^* = T^*(\Sigma) \mid | \mu_X S$
- 3. Compute the maximal relationship and Nb(C*) of C*

Appendix E – Joint connectivity

Definition: Given a multi-hop network G and the associated scheduling η , we define $G(\eta)$ the subgraph of G induced by the set of all edges scheduled by η during the whole frame.

Definition: We say that G is jointly connected by the scheduling η if and only if there exists a path from the source node v_S to the destination node v_D in $G(\eta)$.

Appendix F (1/2) – Conditions on WIR

Consider a discrete-time MIMO LTI system described by the I x m transfer function matrix H(z).

$$\Theta \doteq \{(J,K): J \subseteq m, K \subseteq l, |J| = |K| \ge 1\}$$

Set of all combinations of rows and columns of a l x m matrix such that the number of rows is equal to the number of columns.

$$\{|H_{J,K}(z)|:(J,K)\in\Theta\}$$

Set of all minors of H(z).

$$\psi_{J,K}^{H}(z) = \delta_{H}(z) | H_{J,K}(z) |$$

For $(J,K) \in \Theta$, are the zero polynomials of H(z), where dH(z) is the characteristic polynomial of H.

$$\psi^{H}(z) = \gcd(\psi_{JK}^{H}(z), \forall (J,K) \in \Theta)$$

Least zero polynomial, namely the greatest common divisor of all zero polynomials of H(z).

Theorem [Tarokh, ACC-1986]: A MIMO LTI system with transfer function matrix H(z) is controllable and observable if and only if the scalar transfer function $\psi \uparrow H(z) / \delta \downarrow H(z)$ has no pole-zero cancelations.

Appendix F (2/2) – Conditions on WIR

Lemma: The zero polynomials of a MCN M are given by the following expression:

$$\psi_{J,K}^{M}(z) = \delta_{M}(z) \cdot |O_{J,J}(z)| \cdot |P_{J,K}(z)| \cdot |R_{K,K}(z)|$$

where
$$\delta_M(z) = \delta_O(z) \delta_P(z) \delta_R(z)$$
, $\forall (J, K) \in \Theta$.

Theorem: A MCN M is controllable and observable if and only if the following hold:

(5a) for all $i \in m$ and for all $j \in l$, the pairs $(G \downarrow R, \eta \downarrow R \downarrow i)$ and $(G \downarrow O, \eta \downarrow O \downarrow i)$ are jointly connected;

$$\exists (J,K) \in \Theta \text{ s.t. } \psi_{JJ}^{O}\left(\frac{-}{p}\right) \neq 0 \land \psi_{JK}^{P}\left(\frac{-}{p}\right) \neq 0 \land \psi_{KK}^{R}\left(\frac{-}{p}\right) \neq 0;$$

(5b) for each root p of $\delta \downarrow P(z)$,

(5c)
$$m=l$$
 and $\psi \downarrow l, m\uparrow(0)\neq 0$

Corollary: A MCN M is controllable and observable if Conditions (5a),(5c) hold and:

(6b) for each root p of $\delta \downarrow P(z)$, the numerators of $R \downarrow i(z)$ and of $O \downarrow i(z)$ do not have roots in p for all $i \in m$ and for all $j \in l$.