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Motivation and Aims

Motivation
Want to address large-scale/complex control problems
Too many degrees of freedom for monolithic controller design
Need to impose structure to reduce degrees of freedom
Hierarchical control architecture particularly intuitive
Heuristically designed hierarchical control ubiquituos in industry

Aims
Want a formal framework that guarantees “proper interaction” of
control layers to minimize trial and error during design
Hierarchical structures need not be “rigid”; may be embedded
into consensus-type distributed systems, with top-level
functionality temporarily assigned to a node
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Abstraction and Refinement

Have been investigated in different scenarios
Behavioural point of view allows conceptionally (and notationally)
simple explanation of main ingredients

Dynamical system with input/output structure:

Σ =
(

T ,U × Y ,B ⊆ (U × Y )T
)

Abstractions and refinements:
Σa = (T ,U × Y ,Ba) is an abstraction of Σ if B ⊆ Ba

Σr = (T ,U × Y ,Br ) is a refinement of Σ if Br ⊆ B

Interpretation: abstraction (refinement) corresponds to adding
(removing) uncertainty
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Generic Two-Level Control Structure

BL
p: low-level plant model

BH
sup: high-level supervisor

Bım: aggregation & low-level control

uL yL

uH yH

BH
p

BL
sup

. . . can be extended to arbitrary number of control layers . . .

Low-level signal space: WL = UL × YL.
Low-level process model: BL

p . . . behaviour on WL.
Inclusion-type specification: BL

spec . . . defined on WL.
High-level signal space: WH = UH × YH.
High-level supervisor: BH

sup . . . behaviour on WH.
Low-level control: Bım . . . behaviour on WH ×WL.
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Design Procedure
Define high-level signal space (assumed given in this talk).

Low-level control:
Define (inclusion-type) specs BHL

spec for lower control layer –
intended relation between high-level and low-level signals.
Design low-level control Bım enforcing specs BHL

spec.

High-level control:

Synthesise BH
sup for BH

p = BH
ım[BL

p]. Can be done abstraction-based!

Use high-level proj. PH(BHL
spec) of BHL

spec as abstraction of BH
p.

Define high-level spec. BH
spec such that BHL

spec[BH
spec] ⊆ BL

spec.

Find high-level control BH
sup such that PH(BHL

spec) ∩BH
sup ⊆ BH

spec .

=⇒ BL
p ∩BL

ım[BH
sup]︸ ︷︷ ︸

BLsup

⊆ BL
spec
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Where Can Things Go Wrong?

Low-level specification BHL
spec too demanding:

I.e., we cannot find appropriate low-level control.
Need to relax low-level specifications and replace BHL

spec by an
abstraction BHL

spec,a such that BHL
spec ⊆ BHL

spec,a.

Illustration: robot moving in a restricted area:

ẋ1(t) = v(t) cos θ(t)
ẋ2(t) = v(t) sin θ(t)
θ̇(t) = u1(t)
v̇(t) = u2(t)

uL = (u1,u2) low-level inputs
y L = (x1, x2) low-level outputs
uH ∈ {go up, . . .} high-level input
yH = quant(x1, x2) high-lev. outp.

Ex.: “go right” is too
demanding.
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What Else Can Go Wrong?

Low-level specification BHL
spec too coarse:

PH(BHL
spec) serves as abstraction of plant under low-level control.

We cannot find appropriate high-level control.
Need to refine low-level specifications by BHL

spec,r ⊆ BHL
spec.

Example:

“go right” 

Recap:

choice of low-level specs BHL
spec depends on engineering intuition

often involves trade-off between control layers
key advantage: solution of low- & high-level control problems will
provide a solution for the overall problem (guaranteed!)
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Specific Scenario

top layer decides on timing (not ordering!) of discrete events
synthesis based on TEG abstraction of plant + low-level control
TEG (Timed Event Graph) . . . specific timed Petri net

Example:

want to compute earliest
times of k -th occurrences
of events
doable, but time relations
(non-benevolently)
non-linear

x7(k) = max{x4(k) + 1, x2(k) + 6, x2(k + 1), x8(k − 1)}

time relations become linear in certain dioid (tropical) algebras . . .
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Dioid Algebras

A dioid is an algebraic structure with two binary operations ⊕
(“addition”) and ⊗ (“multiplication”) defined on a set D, such that

⊕ is associative, commutative & idempotent (a⊕ a = a ∀a ∈ D)
⊗ is associative and is distributive w.r.t. ⊕
zero element ε, unit element e
ε is absorbing for ⊗, i.e., ε⊗ a = a⊗ ε = ε ∀a ∈ D

Remarks
a dioid is complete if it is closed for infinite sums and ⊗
distributes over infinite sums
dioids are equipped with a natural order: a⊕ b = a⇔ a � b
addition and multiplication can be easiliy extended to matrices
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Example: The Max-Plus Algebra

Defined on Z = Z ∪ {−∞} ∪ {+∞} resp. R = R ∪ {−∞} ∪ {+∞}:
addition: a⊕ b := max(a,b), zero element: ε := −∞
multiplication: a⊗ b := a + b, unit element: e := 0

Time relations for TEGs described by linear implicit difference eqns.

For our example

x7(k) = 1⊗ x4(k)⊕ 6⊗ x2(k)⊕ x2(k + 1)⊕ x8(k − 1)
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The DioidMax
in [[γ, δ]]

Max
in [[γ, δ]] . . . a quotient dioid in the set of 2-dim. formal power

series (in γ, δ), with Boolean coefficients and integer exponents
interpretation of monomial γkδt :

- k th occurrence of event is at time t at the earliest
- equivalently: at time t , event has occurred at most k times

 have to consider “south-east cones” (instead of points) in Z2

Example: s = γ1δ1⊕γ3δ2⊕γ4δ5

Properties:

γkδt ⊕ γ lδt = γmin(k,l)δt

γkδt ⊕ γkδτ = γkδmax(t,τ)

γkδt ⊗ γ lδτ = γ(k+l)δ(t+τ)

Zero element: ε = γ+∞δ−∞

Unit element: e = γ0δ0

interpretation of partial
order: inclusion in Z2
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The DioidMax
in [[γ, δ]] ctd.

Time relations for TEGs become linear algebraic eqns. inMax
in [[γ, δ]]

For our example
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x7 = δ1γ0x4 ⊕ (δ6γ0 ⊕ δ0γ−1)x2 ⊕ δ0γ1x8

In general, with input & output trans. (triggered resp. seen externally):

x = Ax ⊕ Bu
y = Cx
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In general, with input & output trans. (triggered resp. seen externally):

x = Ax ⊕ Bu
y = Cx
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Control in the DioidMax
in [[γ, δ]]

Plant:
state model x = Ax ⊕ Bu, y = Cx
i/o rel. y = CA∗Bu, with A∗ :=

⊕
i∈N0

Ai . . . Kleene star operator

Output feedback:

u = Ky ⊕ v
 y = CA∗BKy ⊕ CA∗Bv

y = (CA∗BK )∗CA∗B︸ ︷︷ ︸
Hcl

v

Aim: just-in-time policy

find greatest K s.t. Href � Hcl , with
Href a given reference model
“greatest” and “�” in the
sense of natural order in
Max

in [[γ, δ]]

Solution:
desired feedback K can be obtained using “residuation theory”:

Kopt = (CA∗B)◦\Href 6 ◦ (CA∗B)
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Tradeoff Between Control Layers

Kopt

Hspec

Kopt . . . greatest feedback K s.t.

(HspecK )∗Hspec � Gspec

for a given overall spec. Gspec

Hspec . . . low-level spec., i.e.,
abstraction for plant under
low-level control

Result:
Given overall specification Gspec

Given low-level specifications Hspec1
, Hspec2

, with Hspec1
� Hspec2

(and some “natural” restrictions in place)
Compute corresponding optimal feedback control Kopt1 , Kopt2

Can show that Kopt1 � Kopt2 (“stricter low-level specs allow for
more relaxed high-level control”)
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Conclusions

Interpreted trade-off between layers in a hierarchical control
system from a behavioural point of view
Formally investigated this trade-off for a specific scenario where
top layer is responsible for timing of discrete events
Resulting setup conveniently described in the dioidMax

in [[γ, δ]]

Verified that stricter low-level specs indeed allow for more
relaxed high-level control
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