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Model Predictive Control (MPC) — the basic idea
Plan over a future horizon
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The optimisation problem

If:

Model: Linear & Cost: Convex & Constraints: Convex

Then:

Convex optimisation problem (QP, LP, . . . )

Else:

Non-convex optimisation — local minima

But:

Must be solved ‘quickly’.

So:

Formulate convex problem if possible.
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Over-actuated systems
Aircraft example: 12 states, nearly 30 actuators

C. Trajectory Following for Rudder Runaway

In this section, the simulation results for unanticipated rudder
runaway are presented. The rudder runaway fault is injected at
T ! 18 s. After this, the upper and lower rudder surfaces start
movingwith a rate of 50 deg =s from their position atT ! 18 s to the
minimum deflection position of"25 deg. The rudder runaway fault
is declared to be an unanticipated fault atT ! 23:2 s. It can be seen in
Fig. 8 that the aircraft starts to roll immediately after insertion of the
fault and that the reference signals are not tracked very well just after
the fault. This is because SPC needs some time to gather data for
adapting to the faulty condition. After this has been done, the
reference signals are tracked satisfactorily again. Also note that the
aircraft has a sideslip angle, which cannot be completely controlled
toward zero due to the fault. At T ! 100 s, the heading change is
initiated. Subsequently, at T ! 200 s, a descent to 100m is initiated.
In Fig. 9, it can be seen that both the heading change and the descent
maneuver are performed adequately. Furthermore, it can be observed
that the autopilot is unable to counteract the yawing moment
resulting from the rudder runaway fault, not even with a full
deflection of the spoilers and ailerons. It is therefore clear that the
human pilot must intervene to try to accommodate the fault. In
Fig. 10, it can be seen that, after the fault, some time is required before
the control signals become smooth again, which is a result of the
adaptation process. Also, it can be seen how the ailerons work
together with the engines (providing differential thrust) and the
spoilers to counteract the yawing moment resulting from the rudder
runaway fault. In the time interval T ! 200–300 s, the rudders have
moved away from their minimum deflection position of "25 deg
because the aircraft picks up speed resulting in a reduced blowdown
limit, which means that the rudders are forced back toward their
neutral position.

D. Concluding Remarks on Simulation Results

The presented simulation results show that by using the proposed
methodology, it is possible to design a controller for the nominal and
faulty aircraft using only input–output data. This conclusion is
remarkable, especially when the complexity of the aircraft model is
considered. Although the performance of the designed controllers
might not be on the same level as that of advanced model-based
controllers, the proposed control design methodology has two
important advantages:

1) Modeling of the system to be controlled takes up a large part of
the design process ofmodel-based controllers. Because the proposed
methodology provides a framework to derive a controller using only
input–output data, a significant amount of time can be saved in the
design process.

2) For fault-tolerant control, it is often required to have a model of
the postfault system. This requirement results in the impossibility of
providing fault-tolerant control for all possible faults because not all
possible faults can be anticipated. However, the proposed
methodology can even deal with unanticipated faults by adapting
online to faults using input–output data. Therefore, it is a very
suitable method for fault-tolerant control.

VI. Conclusions
A reconfigurable fault-tolerant control system is presented that is

able to adapt online to faults. This system consists of a subspace
predictor, derived in a closed-loop setting, combined with predictive
control. The subspace predictor, which does not require knowledge
of a mathematical model, is continuously updated online using new
input–output data. It is this property that gives the proposed system
its ability to adapt to faults. These faults may be either anticipated or
unanticipated, which is determined by a multiple-model fault
classification system. In case of anticipated faults, prior knowledge
of the faults allows the changed dynamics to be captured faster than
purely relying on adaptation. A special setting for unanticipated
faults has been designed that uses more control inputs than for
anticipated faults to fully exploit the adaptation capabilities. The
proposed fault-tolerant control system is evaluated in simulation on a

detailedmodel of a Boeing 747. In the simulation of an unanticipated
fault, it can be seen that the controller requires some time to adapt to
the new fault situation. This is an inevitable consequence of the data-
driven adaptation concept. However, in general, it can be concluded
from the simulations that the system performs satisfactorily in both
nominal and faulty conditions.

Appendix: Control Inputs for the Boeing 747
The 30 different controls that are available on the Boeing 747 are

listed in Table A1. The locations of these controls on the aircraft are
depicted in Fig. 11.

Table A1 Controls of the Boeing 747

Control no. Description

1. right inner aileron
2. left inner aileron
3. right outer aileron
4. left outer aileron
5. spoiler panel # 1
6. spoiler panel # 2
7. spoiler panel # 3
8. spoiler panel # 4
9. spoiler panel # 5
10. spoiler panel # 6
11. spoiler panel # 7
12. spoiler panel # 8
13. spoiler panel # 9
14. spoiler panel # 10
15. spoiler panel # 11
16. spoiler panel # 12
17. right inner elevator
18. left inner elevator
19. right outer elevator
20. left outer elevator
21. stabilizer angle
22. upper rudder surface
23. lower rudder surface
24. outer flaps
25. inner flaps
26. thrust engine # 1
27. thrust engine # 2
28. thrust engine # 3
29. thrust engine # 4
30. landing gear
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Fig. 11 Locations of controls on the Boeing 747.
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Over-actuated systems
Ship roll stabilisation: fins and rudder

Cruise ship
Michelangelo

(1962)
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Over-actuated systems

• Standard MPC moves all the actuators all of the time (like LQR).

• We may have preferred actuators:

• Aircraft: Ailerons normally, spoilers only if necessary.
• Ship roll control: Stabilisers normally, rudder only if necessary.

• Actuators may ‘fight’ each other to get differential action.

• So we may want sparse solutions.

• If control actions are expensive, we may want
sparse in time solutions — like Statistical Process Control.
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How to get sparse solutions?
‘Regularise’ by adding ‖u‖q (or ‖∆u‖q) penalty term

min
u

F (xN) +
N−1∑
k=0

(
xT
k Qxk + uT

k Ruk

)

+λ‖uk‖q

subject to constraints.

q = 2 q = 1 q = 0.5 q = 0

q = 1 is the smallest q that gives a convex problem.
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`asso-MPC gives sparse solutions for large enough λ
Example: Unstable toy plant

A =

[
0.15 0.1

0 1.1

]
B =

[
1 1
0 1

]
Q =

[
20 0
0 60

]
R =

[
0.1 0
0 0.1

]
‖x‖∞ ≤ 20 ‖u‖∞ ≤ 5

λ = 300
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`asso-MPC gives sparse solutions for large enough λ
Example: Ship roll control
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Figure: Solid: `asso-MPC (λ = 1.8). Dashed: Standard MPC.
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Why ‘`asso-MPC’?

• LASSO: L1-constrained fitting for statistics and data mining.

• A method for variable selection —
which are the important explanatory variables?

• Has been used in ‘sparse regression’, data compression,
wavelet expansions, . . .

• It’s not ‘`2-MPC’ or ‘`1-MPC’.
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`asso-MPC: Anything new here?
Is control different from modelling/statistics?

• Stability

1. Dual-mode approach: Switch to regular LQR when close to
set-point. But then sparseness is lost in the terminal set.

2. Contractive terminal set approach: x̂k+N ∈ {x : F (x) ≤ ck},
with {ck} decreasing according to LQR ‘cost-to-go’.
(F (x) is terminal cost.)

3. New terminal cost which preserves sparseness in the terminal set.

• Robustness: Add/tighten constraints to get recursive feasibility with
model xk+1 = Axk + Buk + wk , wk ∈W .

• Offset-free tracking: Use disturbance estimator and target calculator
(modified for `1 term).
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Conclusions

• MPC is very successful, in great demand.

• Over-actuated systems or expensive controls: `asso-MPC.
(An example of What not How.)

• Simultaneous regulation and control allocation.

• Further developments:

• Tuning to select preferred actuators, enhance pre-existing controllers.
• Design to maximise region of attraction.
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