P. 542, last boxed set of equations: Difference between revisions
From Bill Goodwine's Wiki
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The first equation should be | |||
a_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r f(r, \theta) \cos m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math> | |||
The second equation should be | |||
b_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r f(r, \theta) \sin m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math> | |||
The third equation should be | The third equation should be | ||
<math>c_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r g(r, \theta) \cos m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} J^2_m (z_{m,n} r/\hat r) \right)}</math> | <math>c_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r g(r, \theta) \cos m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math> | ||
and the fourth equation should be | and the fourth equation should be | ||
<math>d_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r g(r, \theta) \sin m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} J^2_m (z_{m,n} r/\hat r) \right)}.</math> | <math>d_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r g(r, \theta) \sin m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}.</math> | ||
[[Engineering Differential Equations: Theory and Applications, Springer 2010#Errata|Return to errata.]] | [[Engineering Differential Equations: Theory and Applications, Springer 2010#Errata|Return to errata.]] |
Revision as of 14:02, 6 November 2023
The first equation should be
a_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r f(r, \theta) \cos m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math>
The second equation should be
b_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r f(r, \theta) \sin m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math>
The third equation should be
and the fourth equation should be