P. 542, last boxed set of equations: Difference between revisions

From Bill Goodwine's Wiki
Jump to navigationJump to search
Goodwine (talk | contribs)
No edit summary
Goodwine (talk | contribs)
No edit summary
Line 1: Line 1:
The first equation should be
The first equation should be


<math>a_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r f(r, \theta) \cos m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math>
<math>a_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r f(r, \theta) \cos \left( m \theta \right) J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math>


The second equation should be
The second equation should be


<math>b_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r f(r, \theta) \sin m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math>
<math>b_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r f(r, \theta) \sin \left( m \theta \right) J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math>


The third equation should be
The third equation should be


<math>c_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r g(r, \theta) \cos m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math>
<math>c_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r g(r, \theta) \cos \left( m \theta \right) J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}</math>


and the fourth equation should be
and the fourth equation should be


<math>d_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r g(r, \theta) \sin m \theta J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}.</math>
<math>d_{m,n} = \frac{\hat r}{\alpha z_{m,n}} \frac{\int_0^{\hat r} \int_0 ^{2 \pi} r g(r, \theta) \sin \left( m \theta \right) J_m (z_{m,n} r/\hat r) d \theta dr}{\left( \int_0^{2 \pi} \cos^2 m \theta d \theta \right) \left(\int_0^{\hat r} r J^2_m (z_{m,n} r/\hat r) \right)}.</math>






[[Engineering Differential Equations: Theory and Applications, Springer 2010#Errata|Return to errata.]]
[[Engineering Differential Equations: Theory and Applications, Springer 2010#Errata|Return to errata.]]

Revision as of 14:04, 6 November 2023

The first equation should be

am,n=r^αzm,n0r^02πrf(r,θ)cos(mθ)Jm(zm,nr/r^)dθdr(02πcos2mθdθ)(0r^rJm2(zm,nr/r^))

The second equation should be

bm,n=r^αzm,n0r^02πrf(r,θ)sin(mθ)Jm(zm,nr/r^)dθdr(02πcos2mθdθ)(0r^rJm2(zm,nr/r^))

The third equation should be

cm,n=r^αzm,n0r^02πrg(r,θ)cos(mθ)Jm(zm,nr/r^)dθdr(02πcos2mθdθ)(0r^rJm2(zm,nr/r^))

and the fourth equation should be

dm,n=r^αzm,n0r^02πrg(r,θ)sin(mθ)Jm(zm,nr/r^)dθdr(02πcos2mθdθ)(0r^rJm2(zm,nr/r^)).


Return to errata.