P. 244, line -11: Difference between revisions

From Bill Goodwine's Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 2: Line 2:


<math>\int_0^t \Xi^{-1}(\tau)g(\tau) d \tau = \int_0^t \left[ \begin{array}{c} -\frac{1}{2} \\ \frac{1}{2} e^{-2 \tau} \end{array} \right] d \tau = \left[ \begin{array}{c} -\frac{1}{2} t \\ \frac{1}{4} \left( 1 - e^{-2 t} \right) \end{array} \right].</math>
<math>\int_0^t \Xi^{-1}(\tau)g(\tau) d \tau = \int_0^t \left[ \begin{array}{c} -\frac{1}{2} \\ \frac{1}{2} e^{-2 \tau} \end{array} \right] d \tau = \left[ \begin{array}{c} -\frac{1}{2} t \\ \frac{1}{4} \left( 1 - e^{-2 t} \right) \end{array} \right].</math>
[[Engineering Differential Equations: Theory and Applications, Springer 2010#Errata|Return to errata.]]

Latest revision as of 15:10, 25 January 2011

The line should be

Return to errata.