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Abstract

This paper develops a mofion planning algorithm which exploits sym-
melries in distribured systems 1o reduce motion planning compufation
complexity. Symmetries allow for algebraic manipulations that are
computationally costly, which normally must be carried ouf for each
component in a distributed system, to be related among various sym-
mefric components in a distributed system by a simple algebraic rela-
fionship. This leads fo a large reduction in the complexity of the over-
all motion planning problem for a group of distributed mobile robofic
agents. In particular, due to the manner in which a symmeltric sys-
fem 18 defined, the structire of the Chen—Fliess-Sussmann differential
equations has a simple relationship among various symmetric com-
ponents of a distributed system. Essentially, symmelries are defined in
a manner which preserves the Lie algebraic striucture of each compo-
nent. In a system with distributed computafional capability, the mo-
fion planming compulations may be distributed throughout formation
in such a way that the objectives of the formation are salisfied and
cotlision avoidance 18 guaranteed. 1he algorithm maintains a rigid
body formation af the beginning and end of the frajectory, as well as
possibly specified intermediafe points. Due fo the generally nonholo-
nomic nature of mobile robots, guaranteeing a rigid body formation
during the intermediate motion is impossible. However, it is possible
fo bound the magnitude of the deviation from the rigid body formation
ar any point along the trajectory. Simulation and experimenital resulls
are provided fo demonstrate the ufility of the algorithm.

KEY WORDS—distributed robot systems, nonholonomic mo-
tion planning, path planning, multiple mobile robot systems

1. Introduction

This paper presents a distributed motion planning algorithm
for formations consisting of a large number of robots. The mo-
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tion planning algorithm developed is an extension of a well-
known piecewise constant Lie-algebraic motion planning al-
gorithm (Lafferriere and Sussman 1993). The main result in
this paper is that the primary computational burden for mo-
tion planning for a system of agents which meet the required
symmetry condition is essentially reduced to that for only one
agent. In particular, the costly exercise ( Kawski 2004 ) of com-
puting the product of Lie exponential series and the subse-
quent algebraic manipulation of the resulting expression into
the Chen-Fliess—Sussmann equations (as defined and outlined
by (Murray et al. 1994) need only be done once for a group of
robots that are appropriately related through a symmetry con-
dition. While the method of Lafferriere and Sussman (1993)
is far from optimal and only an approximate method for most
systems, it 1s analytical, which makes possible the extension
of the method in this paper.

If the appropriate symmetry conditions are satisfied, only
one robot must complete the entire procedure to compute
its trajectory using the Lie-algebraic method, which naturally
makes the method especially amenable to distributed systems
and distributed planning. Despite the superficial similarity that
one robot has comparatively more computational burden, this
method is not ‘leader-follower’ in the sense commonly used.
The other robots do not depend upon the first robot success-
fully completing its maneuver or broadcasting any informa-
tion during the maneuver. Also, any of the robots may be the
one that is required to compute the entire trajectory, although
the logical choice for which robot does so would be the robot
with the most computational power. Thus, the main theoretical
conftribution of this paper is the fact that the nonlinear motion
planning problem for a system of multiple symmetric robots is
effectively reduced to motion planming for one robot.

The method that 1s extended by this paper, and theretore the
extension of this method, 1s fundamentally open loop. How-
ever, 1f position sensing 1s possible, error correction is natu-
rally incorporated into the algorithm as well as its extension.
In particular, as outlined in Section 3, in order to guarantee col-
lision avoidance, any large trajectory must be segmented into
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a sequence of smaller trajectories. Since the net motion will
be implemented along these subtrajectories with a sequence of
intermediate goal configurations, if position sensing is avail-
able, it can easily be incorporated into the plan for each of the
subtrajectories.

Formation control of robotic systems has attracted a great
deal of interest in the literature (Yamaguchi and Burdick 1998;
Desai and Kumar 1999; Yamaguchi 1999; Egerstedt and Hu
2000; Chaimowicz et al. 2001; Leonard and Fiorelli 2001;
Sugar et al. 2001; Yamaguchi et al. 2001; Olfati-Saber and
Murray 2002; Fax and Murray 2004). However, many of these
results consider only fully actuated robots (Yamaguchi 1999;
Leonard and Fiorelli 2001; Yamaguchi et al. 2001) or are lim-
ited to a particular robot geometry (Yamaguchi and Burdick
1998). The goal of this work 1s to develop a general implemen-
tation of a formation control algorithm that may be applied to a
large class of robotic systems, including nonholonomic robots.
There has also been a great deal of research in the area of non-
holonomic robot motion planning (Sussman 1991; Bates and
Sniatycki 1993; Lafferriere and Sussman 1993; Murray and
Sastry 1993; Teel et al. 1995; Laumond et al. 1998; Souéres
and Boissonat 1998; Chitta and Ostrowski 2002). For example,
there have been motion planning algorithms developed using
sinusoidal inputs (Murray and Sastry 1993; Teel et al. 1995)
and piecewise-continuous inputs (Sussmann 1991; Laffierrere
and Sussman 1993). However, there have been only a few ef-
forts considering groups of nonholonomic robots working in a
cooperative manner. The goal of our work is to develop meth-
ods for designing and implementing scalable motion planning
algorithms for groups of nonholonomic robots.

This paper is structured as follows. In Section 2, the neces-
sary background is outlined. Section 3 presents the theoretical
development of the rigid body formation planning algorithm.
A detailed example using a system of robots with nonholo-
nomic kinematics such as that of a kinematic car 1s presented in
Section 4. Collision avoidance is discussed in Section 3. Sec-
tion 6 presents some experimental results and compares them
with simulation results. Finally Section 7 presents conclusions
and discusses possible avenues of future work.

2. Background

This section provides necessary background material from
the authors’ previous work (McMickell and Goodwine 2001,
2002, 2003a, 2003b; McMickell 2003) necessary to formulate
our motion planning algorithm for symmetric nonlinear dis-
tributed systems. Only the main 1deas as well as a computa-
tional means to determine a symmetry are presented here and
the reader is referred to the references for a complete expo-
sition. We also review the motion planning algorithm that is
used by this work (Lafferriere and Sussman 1993). Examples
of the computations necessary to implement the methods from
this section are presented in subsequent sections along with
simulation results.

2.1. Symmetric Nonlinear Systems

For most distributed robotic systems, the configuration mani-
fold M is naturally partitioned into a set of n regular manifolds
M;,i € {1,...,n}, such that M is the Cartesian product of
the M;, i.e. M = Hle M;. In a system comprised of multi-
ple robots, each M; represents the configuration space for an
individual robot in the formation. We further assume that asso-
ciated with each M, is a set of control inputs {u}, #2, ...}, and
that each input is associated with only one M;. This is natural
since actuators in a robot will typically only affect that robot
and not other robots. Thus, we can define a component, de-
noted V;, of the overall system to be the manifold M; which
is 1ts configuration space and the associated control inputs, 1.e.
V. = (M, {u%, u?, ...}) and denote the ordered set of compo-
nents Y=l = 1.. .. 7}
We will consider analytic driftless systems of the form

 : & = giuj+gi@ui+-- (1)

+ gy + g (x)us + - -

+ grur+grx)uc+---  xeM,
where the g/ are smooth analytic vector fields on M. In Equa-
tion 1, the subscript on the g’s and #’s indicates the compo-
nent to which the control mput corresponds, and the supet-
script enumerates different inputs within that component.

Let ¢ denote a permutation on the set of n symbols
{1,2,...,n}. This naturally gives rise to an induced permu-
tation of the ordered elements of M given by

J#(M) — 1—_[ Mr:r(:}*
=1

Since the Cartesian product is ordered, in general M £ o4 (M)
unless ¢ is the identity or, in the case that is of interest in this
paper, when the underlying manifolds M; that are permuted
by oy are either the same or diffeomorphically related. This
latter case corresponds to when, in a system of multiple ro-
bots, the robots are the same or perhaps scaled versions of each
other and the action of ¢ 4 corresponds to interchanging the ro-
bots. Finally, vector fields on M are related to vector fields on
o4 (M) by the usual push forward of o4 given by

(04).8] =Togogl ooy .

In this case g/ is a vector field on M and (o¢).g’ is a vector
field on o4 (M).

The fundamental idea motivating this work is that it is nat-
urally the case in many distributed systems that many of the
components of the system are identical or nearly identical and
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interact with other components in a (nearly) identical manner.
In such a case it may be possible to physically interchange
components without substantially altering the properties of the
system. This will be represented by the fact that the equations
of motion remain invariant under the action of (¢4),. In other
words, the equations of motion are such that the system on M
is the same as the system on o4 (M), then the original system
18 mvariant to interchanging components.

The means to test whether or not a system 1s symmetric in
this sense is to determine whether or not some vector fields
remain invariant under the action of (¢4),. In particular, two
vector fields are defined to be equivalent, denoted by g/ ~ g/
if there exists a o 4 such that

gl = (o4). &g’

Note that this equality only makes sense in the case when M =
¢ 4 (M) and that even checking this equality will generally not
be possible when this is not the case.

Components V; and V, are said to be symmetric if for each
J there exists a k& and a ¢4 such that

gfr — (5"#)* gff'

The reason for the different superscripts j and k is that the
inputs on components ¢ and r may not be ordered in the same
way. In the usual case where they are, then the two components
are symmetric when

g = (c9), 8],

for all the inputs #; defined on components i and r.

This definition only encapsulates the notion of when two
components are interchangeable. However, it is clear that a
slightly weaker form of symmetry will probably still be use-
ful. An example of this would be when two components are
not exactly the same, but rather scaled versions of each other.
In fact, as will be clear subsequently, all that i1s required 1s that
they be diffeomorphically related. In light of this we will ex-
tend the definition of symmetric components to be that two

components are symmetric if there exists an automorphism
f: M — M such that

gl = (o). 0 f) (&)

For simplicity, in the subsequent development we will only
include o ¢ notationally in the computations and if an automor-
phism f 1s necessary for the system to be symmetric, it will be
notationally absorbed into & .

An additional complication is that the vector fields for the
system may depend on parameters other than the states, for
example, the physical parameters (lengths, etc.) of a robot. It
is desirable that our notion of symmetry encompasses the case
where robots are not necessarily identical, but are related by a
simple variation in physical parameters that does not alter the
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fundamental nature of the system. An example of this would
be having two robots where one 1s simply twice the size of
the other. We will denote the set of parameters corresponding
to component 7 by p; and extend the definition of symmetric
vector fields to

g = ((c4). 8]
which denotes that the parameter values for component ¢ are
substituted for component ». We will limit our attention to sys-
tems with parameter values that do not change with time, and
hence in all the computations that follow a simple substitution
of parameter values is all that is necessary.

A subset O; C V, called a symmeifry orbit, is the set of
components that have equivalent vector fields associated with
them. Systems that satisfy the above assumptions are referred
to as symmetric distributed systems.

Pi?

2.2. Piecewise Constant Motion Planning

The motion planning algorithm developed in this paper is an
extension of piecewise constant motion planning algorithm by
(Lafferriere and Sussman 1993). A complete description of
this motion planning algorithm is beyond the scope of this pa-
per, so only an outline will be provided in this section. It 1s im-
portant to note that this method works exactly only tor nilpo-
tent systems. For systems that are not nilpotent, the method is
approximate.

The basic idea of Lafferriere and Sussman (1993) is to de-
compose the desired trajectory into multiple subtrajectories
along vector fields which, when evaluated at a point, form a
basis for the tangent space of the configuration space. For un-
deractuated systems, the basis will contain motion in a Lie
bracket direction. Recall that a Lie bracket in coordinates is
given by
og> . g ,
ox® T ax S
Motion in a Lie bracket direction can be approximated using
the following tour segment flow,

[g', &°1=

bi (ko) =97, 007 0 6% 0 (%), (D

_g? _gl.

where c;fvfg (xo) represents the flow along the vector field g for
time f starting at point xg.
Given an underactuated control affine system of the form
¥ o= g @ui+---4 g"(x)um,
x € M, dmM=s>m, (3)

it is well known that the system is controllable if there exist

Lie brackets such that
TR, B, vausif® [85, 871,

[glr 33]? SRR [g1’ [31:32]]p ‘e }) = §.
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The method requires two basic steps. First, an extended sys-
fem 18 constructed, which is of the form

X g vt + g2 + -+ g7 (V"

+ "yt 4+ 2 ()Y, 4)

where the ¢' for i > m are Lie brackets among the vector
fields in the original control system in Equation 3 such that
the distribution A = span (g', ..., g°) is full rank. The v*’s
are called ficfitious inputs since they do not correspond to in-
puts in the real system for ¢ > m. The reason for constructing
the extended system is that motion planning is trivial for it be-
cause, given a desired trajectory, y (f),

O =g GOV +EG OV +---+ 2O

S50

= [ gy ) & () g (y(®) _l;a'f(r).

5

v

Note that since this matrix must be inverted as a function of
desired trajectory, and hence a function of f, it must either be
done analytically or numerically many times corresponding to
many different points in time. One benefit from the analysis
in this paper will be the need to compute this inverse only one
time for symmetric components in a distributed system.

The second step n the method 1s to associate with each
vector field gf, i = 1,...,s an indeterminant B;. In indeter-
minants, Lie brackets are of the form [B;, B;] = B;B; —B; B;.
A main theoretical development in (Lafferriere and Sussman
1993) is to relate the solution of Equation 4 in M to solutions
of the formal differential extended system

S@t) = S(O(Bv! +--- + Byy), (5)

where S(f) is the series representation of a given trajectory in
the space of indeterminants. In particular, flows along vector
fields in M, quv;,- are related to exponentials in indeterminants,

i.e. e%’, The main utility of using indeterminants is that it is
possible to expand the exponential terms in the usual conve-
nient manner,

1 1
eBit — 1+B1,;£+E(BI-I)E+E(BI-;)3+”. :- (6)

which is not justified for vector fields since the square of a vec-
tor field is a differential operator but not another vector field.

It is the case that any smooth trajectory can be represented
by the Chen—Fliess series

S:(g) = e WBshs-1®Bsm1 . ph2 ()82 h1()B1 (7)

where Ay, ..., ks are functions know as the (backward) Philip
Hall coordinates and ultimately are related to the total time
that the system must flow along each vector field to accom-
plish a given motion.

By differentiating Equation 7, computing expansions of
each term in the form of Equation 6 up to a sufficiently high
order, grouping terms into linear combinations that correspond
to Lie brackets in the Lie algebra of indeterminants and equat-
ing it to Equation 3, we can solve for the h’s in terms of the
fictitious inputs, which results in a set of ordinary differential
equations,

h= Qh)v,

where Q(4) is a coefficient matrix in terms of the Philip Hall
coordinates and 4 and v are vectors composed of the individual
components 4; and v*, respectively.

It is emphasized that except for the simplest of systems,
this step is burdensome since each term in Equation 7 must
be expanded, then each expansion must be distributed over all
the other expansions and then terms corresponding to a Lie
brackets in indeterminants must be identified. It is also funda-
mentally an algebraic manipulation, so is not of the nature that
may be easily automated numerically. In the case of a sym-
metric system of robots, repeating this step for each individual
robot 1s what 1s avoided by making use of the symmetries in
the system.

It 1s easier to determine the real inputs using forward rather
than backward Philip Hall coordinates. The formal system cor-
responding to forward Philip Hall coordinates is

h(0) =0, (8)

S:(g) = OB h OBy | phs()Bs (9)

An algebraic transformation relates the forward Philip Hall
coordinates to the backward Philip Hall coordinates. 'This
transformation is calculated by equating Equations 7 and
Equation 9 to obtain

s OBs DBy 11 OB (g ) — F1DB1h OBy . hs)Bs (g y

expanding the exponentials and equating coefficients of the
Philip Hall basis elements to get

S )
Y By = pix(h),
=1 j=1

where D ; (h) and p ; x(h)are polynomial functions in terms of
forward and backward Philip Hall coordinates, respectively.

3. Piecewise Motion Planning for Rigid Body
Formations

The motion planning problem that is considered in this paper is
as follows. Given m robots in a formation, determine an open
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[EI] .......... E] .......... r,—§]

Fig. 1. Example of a rigid body of robots.

j S—
—1
= 5
| =

loop control £ +—> u (¢) that steers the formation from any initial
position and orientation to any fmal position and orientation
while maintaining the relative positions of the robots in the
formation. That 1s, the formation begins and ends its motion
as a rigid body as shown in Figure 1. The motion planning
of the entire formation 1s partitioned into motion planning of
each robot individually. We then show that the motion plans
between any two robots in a symmetry orbit are related by a
symmetry operator.

For a nonlinear symmetric system of g robots in a rigid
formation, motion planning may be accomplished as follows.
Let each robot consist of n states, so that dimM; = » and
dimM = n x g. We consider robots where the dynamics of
the 7th robot is of the form

(10)

Given a desired final position and orientation for the for-
mation, we must determine the trajectory of the ith robot in
order to apply the piecewise motion planning algorithm. The
first step is to determine a rotation matrix

R eSOR)d---dS0(2)=S50(29g)
N —
q times

such that R(eT') produces the desired final orientation of the
rigid formation. (This R 1s simply g copies of a 2x 2 rotation in
block diagonal form in a matrix representation). The frequency
@ 18 simply the rotational velocity of the rigid formation. Next,
choose a mapping g(tf) € C! connecting the initial center of
the formation to a desired final center for a given f € [0, T'].
This can be done using any C! function, and often a straight
line will suffice. Note that g (f) € R**4. The trajectory of the
rigid body is given by

pt) = Rwi)P + q(1), (11)
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where P € R"*? is a vector of the mitial position of each of the
robots in the formation relative to the center of the formation.
The trajectory of the ith robot in the rigid body is given by

pi(t) =, (R(@wt) P + q(t)) = R;(0t) P; + q;(t), (12)

where P; € IR” 1s the imitial position of robot 7 relative to the
center of the formation and =z ; 1s the projection that simply
returns the components of p(f) corresponding to the ith robot.

The rigid formation uniquely determines the position of
each robot, but it does not constrain the robot’s orientation
within the formation. Let () € C! describe the changing
orientation of the robots. The rigid body trajectory for the 7th
robot is, i

yi) = A wH P +q, (1) +7: (),

where P, is the initial state of the ith robot (position and ori-
entation) with respect to the center of the rigid body, A; (w{) is
an augmented rotation given by

| Riwt) O
Awh=| ; :
0 1

g;(f) is an augmented trajectory given by

. F q: (1) -
qi (f) — s
0
and 7; (f) is given by
i ) .
ri(f) = :
¥ (f)

Taking the derivative of the trajectory, we find
y:(£) = A;(wi) P, + 4. (£) + 7:(p).

The construction thus far only includes the components of the
trajectory that represent the rigid body motion of the system
in S E(2) (Special Buclidean Group). If there are other compo-
nents, such as internal configuration variables for each robot,
they may be simply appended to y,(f). This is subsequently
illustrated in the kinematic car example.

Considering one of the symmetric components, say V;, we
can form an extended system consisting of s linearly indepen-
dent vector fields,

m-+1 ;'j?H—l )

X =LV de ot BP0 F LT b BV

where the v;’s are fictitious inputs and the g;’s are selected
such that A; = span(m;gl, 7:g?,...,7.g’) is full rank,
where 7; 1s the projection onto the ith component (i.e. it just
picks off the components from the very large vector fields that
correspond to the states in component 7). In order to determine



1030 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2007

the fictitious inputs, define an ordered matrix C; composed of
vector fields that are linearly independent for all y , (f),

Ci(y: () =[r:8; (y:(0),megs (yi®) ..., me& (y: ()]

Recall that if component V; is underactuated, some of the g’s
will be Lie brackets between vector fields in the original sys-
tem. The vector fields in C; were chosen so they have full
rank over the entire trajectory. Therefore, C 1s invertible and
fictitious mputs for robot ¢ are given by

Vi = C['_l (:"' :’(r)) ]:PI'(I)?

where v; = [v!,...,v7]?. The backward Philip Hall coordi-
nates are determined by solving the Chen-Fliess—Sussmann
equation,

'ili = Q;i(hi)vi,

with the initial condition A (0) = 0. The main result of this
paper is that the backward Philip Hall coordinates for the ith
robot can be extended to other robots in its symmetry orbit
using the following theorem.

(13)

Theorem 3.1 [Let ¥ be a robotic system containing g robols
in the form of Equation 10. If X is a symmelric distributed
system, then the Philip Hall coordinates of any two robots, 1
and r, in the same symmelry orbit of the system with a desired
frajectory given by Eqguation 12, are related by

'&r p— Qr(hr)vr

= G0 oD »,.0)) 7,16,
where y () = m, (R (@) P, +q:(t)) and ¢ (V,) = Vi. If

components r and i have different parameter values, then they
muist be substituted into C”" and hence in that case

(14)

};Vf == Qi(hr)cf_l ((5#)_1 yr[I)]

N0

Before presenting the proof, observe that while the trajec-
tory of the rth robot must be used, the Lie algebraic struc-
ture of the ith robot may be used for computing the trajectory
of the rth robot. In particular, this is represented by the Q,
and C; terms. The C; term may be used because the extended
systems can be related through the symmetry operator ¢ 4 and
the Q; term may be used since the form of the Chen—Fliess—
Sussmann equations only depends upon the algebraic structure
of the Lie algebra ot indeterminants, which will be the same
for symmetric components. The computational savings come
about through both terms. Being able to use (J; eliminates the
burden of constructing the Chen—Fliess—Sussmann equations
for the rth component, and using C. ! eliminates the need to
invert C,, which would have to be done analytically. The ad-
ditional computations needed are related to ¢4, but these are
easy to compute since they are simply permutations.

Proof. Assume that robot 7 and robot r are in the same sym-
metry orbit, that is, there exists an induced permutation o
such that

g;{ (Eﬁ)*gs

Toyo g;f o (cr#)_l

for all g/ and g/.

The proof relies on two facts that result from the symmetry.
Hirst, it is a basic result from differential geometry that the
push forward is natural with respect to Lie brackets, i.e.

(@1)sLf; 81 = oy, (04).8].

Since A; = span (g/, g7, ..
structed as

A, =

i 95 ) is full rank, A, may be con-

span ((E}'#)* gl-l, (ﬂ'#)g: 33; e ey (ﬂ'#)# gf)

= ERHNED B )

Since o 4 is a diffeomorphism and A; is full rank, then A, must
be full rank and hence

X, = glvla oo 4 gliyli 4 gty L esyS (15)
= (0p)sgiv; +---+ (Op)ug Vi
+ (op).g" VI e+ (oy)eglvi (16)

is an extended system for the rth component where m, = m;.
Hence, C, 1s given by

C (y,®) = [z,8 (r.()) =& (v,0)
7. (7,(0))]
= [z ((e0 &) (r,®) =, ((c0) &) (r,®)
7, (o) &) (v, ()]
7, (Tosg 00)™)

v (Towg? @0™) (7, 0) -],

To simplify the notation somewhat, note that the components
of the matrix are given by the To gg/ terms and that each com-
ponent is a function of (g4)™! (y ; (I)). Hence, this may be
rewritten as

Cr (v, )

[ﬂ'r To #gf] i Tu'#gf

-
x (en™y, )
g (@)™ y, )
gl (@)™ y, )
Ci (@)™ 7,().

= xn,(Toy) g &

1

T ; [3;‘ 3;'2
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Furthermore and finally, we have

7 (y,®)=C7 (e y, ()

and hence

€ 050
Cl (@)™ y, (1) 7,0

Since it follows from the construction of the Chen-Fliess—
Sussmann equations that the form of the differential equations
in indeterminants only depends upon the dimension of the
configuration space and the number of inputs, @, = Q; and
the form of the differential equations for the backward Philip
Hall coordinates for component r 1s

Er e Qr(hr)’*’r
= Q0:h)C7 ((ep) 7y, 1) 7,¢). W

4. Symmetry Analysis for a Fleet of ‘Kinematic
Car’ Mobile Robots

This section presents, in detail, the implementation of the re-
sult of the previous section to a fleet of mobile robots. The
model used is called the kinematic car and is a simple model
of wheeled vehicle with steering wheels. This model has been
thoroughly studied and Murray et al. (1994) provide a good
review. For a group of such robots, the equations of motion for
the 7th robot are given by

X; cos &, 0
jf';‘ Sil']ﬁi ()
| = ! + e,
91' %tﬂﬂq‘f&i 0
e | L 0 | 1]

where uz.l is the forward velocity of the drive wheels, u? is the
angular velocity of the steering wheels and /; 1s the wheelbase
of the robot, 1.e. the distance between the front and rear wheels
and x;, y; and &, represent the planar position and orientation
of the robot and ¢, is the angle of the steering wheels. More
compactly, this is represented by

. 1..1 2.2
Ii+3xui +giuf,':l

where g! and g7 are the vector fields in the previous equation.
This model is controllable with
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and
R = sin &, N
I; cos? ¢,
cos &,
4 1 3 Oy oot
g = 8,8 1=18,18,8&1l= N
0
= 0 =
For the ith robot, the matrix C; is given by
Ci (xi, yi,0:, ¢;)
" sind; |
COS 91_ 0 0 —m
; cos &;
B sinf; 0O 0 Tl
tan g, 1 ?
li 0 "~ ; cos? ¢, 0
0 1 0 0
and its inverse by
g
i cos &, siné, 0 D_
0 0 0 1
| cos ¢.sing, cosf; coso, sing, sind; —I;cos’gp, O
| —I; cos® ¢, sin8, l; cos” ¢, cos 8, 0 0

Note that as long as I; # 0, C; i1s defined as is its inverse.
Now, for the 7th robot, the fictitious inputs corresponding
to a desired trajectory, (x;(f), y;(£), 8;(f), ¢,(£)) = y,(f) are
given by
i) =C7 (v,(0) 7. @)
and, skipping over a substantial amount of algebraic effort,

the Chen—Fliess—Sussmann equations for the backward Philip
Hall coordinates are given by

L= ]

2 o= v

h? = hiv?%—v?

4 Lot 5 . 540 8,
h; = =h:h;vi+h;v:+v,,

L 2 EoOL
which may be written in vector form as

h 't 8 o o|[#]
h? 6 1 © @ v?
% N 6 # 1 O y3
it L0 Zhtl R T || o2

Qz’ (hx)v:- (17)
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Solving these differential equations gives the backward
Philip Hall coordinates. The conversion to forward coordi-

nates, again skipping a substantial amount of algebra, is given
by

B = B
B =

B2 = n2—hln?
kY = ht—=hlh.

The forward Philip Hall coordinates are almost the ‘final an-
swer  in that they provide the amount of time the system must
flow along g!, g2, g? and g# in a sequential manner. Since g}
and g? are vector fields in the original system, this 1s accom-
plished simply by having #; = 1 for an amount of time equal

to 4! and #2 = 1 for an amount of time equal to #2. Since g
is a bracket, the flow along it is accomplished by a sequence
of four flows of the form

{Hglp H?:— _H*Il: _H%}a (18)

where each input is ‘on’ for a time equal to 4/ ﬁ?’. This notation
means that

P uil = | At u% = Oforf € [0, ﬁ?], followed by
o u> = landu! = Ofort € [A2, 2h?], followed by
o u! = —1and u? = 0 for t € [2h3, 3h3] followed by

e u! =0and ui-z = —1fortf e [35?43?],

which results in a flow along g2 for a time equal to /> to lead-
ing order.

The sequence of inputs that results in a flow along g* and
also compensates for the 3rd order error resulting from the ap-
proximation for gf’ 1s given by a sequence of 20 inputs, the first
10 of which are

| I = 1 2 L I | 2 1
['“';9“;’5“;‘:_pr_”gﬁ_Hf:uﬂura_u;’:_ul}:

(19)

where each mput is used sequentially and for a time equal to
sy L pean s
it -3 ()"

followed by the sequence of 10 more inputs

2 | N/ 1 2 AR
{HI,HE-,HE-,—HI-,—HI,—HI-,HI,

2

H’;lp —u;, _Hg}s (20)

where each input is used sequentially and for a time equal to

108

40— . . . .
35! ¥ OE ~
30! 5 ’ -
25_ + + ; ) + ) i
20+ Cog g -
Bl g @ @ oW o f I
T H
< : ‘
o T I R P , L :
0 10 20 30 40 50

Fig. 2. Initial (lower left) and final (upper right) configurations
for the fleet of kinematic cars.

The derivation of this relatively complicated sequence on in-
puts can be found in Lafferriere and Sussman (1993).

Having computed the sequence of inputs necessary for the
ith robot, we will now make use of the symmetry properties
of the system to reduce the amount of work necessary to com-
pute the trajectories of the other robots. In particular, the work
necessary to invert C; is avoided for symmetric robots as well
as all the algebraic manipulation to determine the differen-
tial equations for the backward Philip Hall coordinates and
the algebraic effort to determine transtormation to the forward
Philip Hall coordinates. The sequence of inputs necessary to
generate the motion are saved for other robots related to the
first through the symmetry condition.

As an example, consider a formation of 20 robots of this
type in the formation illustrated in Figure 2. The overall mo-
tion of the formation is a displacement in (x, y) by an amount
(20, 20) and a net rotation of Z. We will assume that each ro-
bot starts with an orientation of &; = 0 and at the terminal
formation each robot has an orientation of §; = 5. Hence,
while the formation rotates by %, each robot rotates an addi-
tional & relative to the formation. To add further complexity
to the problem to illustrate the utility of the method, we do not
assume that the parameter { is the same for each robot. In par-
ticular, let I; = 0.5 for robots 1 through 6 and 11 through 20
and let [; = 0.25 for robots 7 through 10. This corresponds
to the robots on the right side of the initial square formation
having a different wheelbase than the rest of the robots.

The configuration space is comprised of the Cartesian prod-

uct
20

MZHMJ;:MI x M, x ---}CMQ{),
i=1
where M; = R? x § x § is parameterized by (xz-, y;,ﬁg,gﬁi).
The equations of motion for the entire system are
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X1 cos f4 0 0
¥1 siné; 0 0
81 %tangzﬁl 0 0
B 0 ! 0
X3 0 0 cosé,
¥2 0 0 siné,
by | = 0 wi+ | O |uf+ éiﬂﬂﬁf’z
0, 0 0 0
Xan 0 0 0
Y20 0 0 0
10 0 0 0
sl | o | lel | o

To consider the nature in which this system is symmetric,
consider the permutation

1 @ = 20
2 1 o 320

which interchanges 1 and 2 and leaves the rest of the elements
fixed. The corresponding induced permutation on M is

G g (xI: Y1, 81: ';ﬁ'l:n A2 anf"za 9352: ey X205 Y20, Hﬁﬂ: ¢2ﬂ)
= (IE.: yZ:- 32: gﬁﬁz xl: }',]ﬂ 911 ‘?51: L :xzﬂ'a J’z&:glﬂa gbﬁﬂ') )

which corresponds to interchanging components 1 and 2. To
compute the pushforward, note that

-D g 9 0 1 0 9 ¢ B 10 U_
g 4 6 0 49 1 9 0 0 0 0 O
g @ 8 & 0 0 1 0 0 0 0 0
g @ & 0 9 0 0 1 0 0 0 0
1 € @ 2 0 0 @ 0 0 0 0 O
g % 8 0 0 9 9 ¢ 0 9 0 B

Tow= |9 & 1 & 0 0 0@ @ G 4 0 %
by 9 0 35 U 0 9 ® 0O 0 0 0O
g 0 @ @ 90 9 9 % L 4 0 »
0 0 6 0 0 O 9 0 0 1 4 @
g ¢ 0 @ 0 0 0 © 0 0 1 0O
_0 uoy 8 U 9 v 0 O Q0 ]_

1033
" 0 Nl
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
wy+ | O |us+---+ 0 Uk | O |
1 0 0
0 cos #4p 0
0 sin ggg 0
0 ﬁ tan ¢, 0
| 0 0 LA
and hence,
(’5#)* g}_’ (.1:1,, s ey ‘?5213)
= Tﬂ'#g% (Xg, h:azsﬁfﬁz:xh }’1:31: qsl?”*?(ﬁﬁﬂ)
[ cosd, | I 0 i
siné 0
- tan ¢ 0
0 0
0 EDSSE
0 sin &»
— TE'"# 0 — %tﬂﬂtﬁr?g ’
0 0
0 0
0 0
0 0
L. 0 = - U —
which is equal to g3 (x1, y1, 81, 1, X2, W, 82, @5, ..., X20,

Y20, B20ag) as long as Iy = L. If I; # b, then by substituting
the parameters for component 1 we have

(@2 (Fis- D)) i, =85 (X1, Pyg) -

Hence, components 1 and 2 are symmetric. Clearly, all of the
components are similarly symmetric under all possible permu-
tations, and hence the symmetry orbit is the entire system.
Since the overall motion of the formation is large and the
Lie-algebraic method is only approximate for systems that are
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not nilpotent, as is the case for the kinematic car, we must seg-
ment the overall motion into smaller trajectories. The next sec-
tion presents a derivation of a bound for the net error and de-
viation from the nominal trajectory for these systems, but for
now we will somewhat arbitrarily segment the trajectory into
50 subtrajectories. At the end of the execution of the motion
plan for each segment, a new nominal trajectory 1s computed to
the next goal point. This 1s necessary tirst to avoid the accumus-
lation of errors due to the approximate nature of the method.
Additionally, it provides an element of realism in that real sys-
tems will have substantial open loop drift from the desired mo-
tion and incorporating periodic updates on the actual position,
while perhaps not continuously available, is straightforward to
implement in such a periodic manner using this method.

We will compute the inputs necessary for robot 1 and then
use the symmetry conditions to determine them for the other
robots. In particular, for robot 1 we have

| cos ZZL  gip ZEL |
& Tt} = 200 200
t : z
I COS 55~  SIn 7= J
) = [ 211
F = ioy=| 2
nt
| —7.5 | =
Bhoc; 2
F‘(I) — 0 ;
nxt
| 0E |
where n is the step number and n € {1,..., 50}. Parameter-

izing a trajectory connecting the starting point at £ = 0 to the
final point for this segment at f = 1 with a straight line gives

(x| [ o085 |
y1() 0.3378681
:p‘ 1(},‘) — — :
61(1) 0.031415¢
I ¢1(f) . I 0 |

assuming that the desired starting and ending configuration for

the steering wheel is 0. Fmally, the fictitious inputs are given
by

vi=C (y,()7,0)

| cos (0.031415¢)  sin(0.031415t) O O

0 0 g g

B 0 0 -
| —11sin0.031415¢f l;cos0.031415t 0 0 |

0.55
0.337868
0.031415

0

Substituting into A1y = Q1(k1)vi, where @ is calculated
from Equation 17, we have the backward coordinates

hi = 055

g = @

h? = —0.0157079¢

hi = 0.1689339¢ —0.0043196¢°

and hence the forward coordinates

hl = 0.55¢

2 = 0

h? = —0.0157079¢

hi = 0.1689339f — 0.0043196¢°.

Thus, to move to the desired end point at f = 1 of the first
segment of this trajectory, the first robot must flow along g;
for a time of 0.55, along g7 for a time of 0, flow along gj,
which requires a four input sequence to approximate for a time
of —0.0157079 (the negative time is easily accommodated by
the method) and finally g (requiring 20 input sequences) for
a time of 0.164614.

For the second robot, we employ Theorem 3.1. First we
must compute y, (f), which is

@ | | 30 -1 +3.53243 |
o (f) 0380294
Y1) = =
0, (f) 0.031415¢
a0 || 0 !
Hence, ) i
0.5324
| 0.380294
Y F=
0.031415
0

We want to compute

ho = Q1(2)CT ((e0) ™ v ()], 72).

At this point we have y,(f), y,() and Q;(h). The
((c#)™"y,(t)) term simply implies the trajectory is to be sub-
stituted for y (f) into C'. Hence we have
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[ Bl ] L & @ o]l cos &, siné, 0 o] [ 0534 ]
h? | & 4 & 0 0 0 0 1 0.380294
h’ 0 A 1 0 cosd, sin,cosé, cosg,sing,sind, —l,cos’p, O 0.031415
| &2 " 0 shiki k! 1 || —licos*¢,sing,  Icos?¢,cosd, 0 B | | N
1 0 0 0 ][ cos(0.031415r)  sin(0.0314157) O 0 | [ 0.5324
0 1 3 10 0 0 B 1 0.380294
a 0 hil 1 0 0 0 —i{, 0 0.031415
0 iplm! nl 1 || —Lsin(0.031415f) I,cos(0.031415t) O O || O
It is emphasized that making this simple substitution into C L = ' ! ' J e '
and also using the same form for Q; (k) for each symmetric 35| / |
component is the manifestation of the main computational sav- Pl / 2
ings from the symmetry analysis. 30| PEE :
Solving these and converting to forward Philip Hall coordi- P A T e S
nates finally gives A T B P ¢
e gl e SR, Skt oF o ;
Al = 0.532426¢ 20+ P Tl Ol e :
B oo o W S AT Sl -
L3 10 ; il y e d
hi = =0.0157079¢ T
BE "™ ieint oo !
hi = 0.190147¢t — 0.00418167¢. T e
0 S | ORI M N i s 1 | ! |
0 2 10 19 20 29 30 39 40

It is worth noting that these values are close to, but not exactly
the same as, those for robot 1, which is to be expected since
they are adjacent robots in the formation. Evaluating these at
t = 1 gives the times to flow along each vector field g}, g3,
g5 and g3. The same sequence approximations may be used as
were done in Equations 18, 19 and 20.

Repeating this exercise for all 20 robots and for each seg-
ment of the desired trajectory gives the final motion, which is
illustrated in Figure 3.

5. Collision Avoidance

Since the motion of the robots is not generally along the nom-
inal trajectory, it i1s necessary to bound the deviation from the
nominal trajectory in order to guarantee collision avoidance.
Our approach will be to show that the deviation from the nom-
inal trajectory 1s bounded by a term that i1s a tunction of the
length of the nominal trajectory as well as the order of the
system. Hence, it will be possible to guarantee collision avoid-
ance if the nominal trajectories do not collide, i.e. intersect at
a given time, by segmenting the overall trajectory into smaller
subtrajectories that can be sequentially followed.

The overall approach is to decompose the complete tra-
jectory into subtrajectories that are small enough to ensure

1035

Fig. 3. Overall motion for a system of 20 kinematic car robots.

there i1s no collision in the system. Since we are consider-
ing small motions, we will consider the system locally in R”.
For the trajectory y, given in Equation 12 for ¢ € [0, T'], let
R: = minygom|ly; ) — jfj-(t)“? such that 7 # j, i.e. the
closest any robot gets to robot i while following the trajectory.
Also, let A; = ||y, () — y;(0)||. Consider a linear trajectory
[ (f) = v,(0)+£(y ,(T) — y,(0)) connecting the initial posi-
tion to the final position. Recall, the fictitious inputs are calcu-

lated by solving 7 ,(t) = [g1(y; () - ... g (¥ ;())]v. Apply-
ing this to the linear trajectory I'; () we find

IT:N = Ny : (T)—y : O < Ig; (), -, &5 ENIv:ll.

From this equation, we find that the fictitious inputs are
bounded by a constant i;, i.e. |v;|| < &;||ILi]l = &;A;. By con-
struction of the real inputs from the fictitious mputs, ||#|| <
£ AY* where k is the order of the highest Lie bracket needed
to make C full rank. Let Ximax = MaXseqo, 77 || X: (£)—7 ;(0)] de-
note the flow that is maximally distant from the starting point.
Note that this is not necessarily y . (7). Pick a ball B; of radius
R; centered at the initial point. Let #; be the maximum norm
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of all the first order vector fields for all points in the ball B;.
The distance ||x; n.x — 7, (0)] is necessarily bounded by the
sum of the norms of each individual flow associated with one
real control input #”’. That is,

1 .
Ims =7 @I < 337 [ glu el
" 0

1/k
;

We know that ||u!|| < #,A
Therefore

and g} (x)|| < ¢; forallx € B;.

X% max — 7:(O)]] = Z Z ML AAE
g

and since A; = ||y ;(T)—y;(0)|], by choosing the desired final
point close enough to the starting point, the robots will not col-
lide. Because A; is raised to the power of 1/, if & 1s large,
then A; may be exceedingly small. This approach is very con-
servative and it 1s best to identity the appropriate step length
experimentally.

6. Experimental Implementation

We implemented this motion planning algorithm on a sys-
tem of four MICAbot mobile robots. A detailed description
of this experimental platform can be found in McMickell et
al. (2003). We first present a sketch of the model used and as-
sociated simulation results. Then we present the result of the
algorithm implemented on the actual robots.

6.1. Symmetry Analysis for Hilare-type Mobile Robots

The kinematics of the MICAbots are the same as that of Hilare-
type mobile robots. For a formation of four Hilare-type robots,
the kinematics of the ith robot are described by Sastry (1999),

X cosd, 0
i | =| sing; |ul+| 0 |4 (21)
91 |+ 0 = B ]. 3

where 1, 1s the linear velocity input and u, 1s the angular ve-
locity input. In the model as well as experiment, it 1s assumed
that all robots are identically parameterized. This model is par-
ticularly useful since there exists a transformation that renders
the system nilpotent, in which case the method of Lafferriere
and Sussman (1993) is exact.

In particular, using inputs,

1 1 o
I cos(@;)

(22)

=
|

'2 C”DSZ (gz)wl-g:

=
1

the system becomes

—

X; 1 0
y;: | = | tané®; W!-l + 0 wz-z,
8, P cos? 8,

which is nilpotent of order 2. For this system, the extended
system 1s given by

%1 T3 | = | [ ®m
v: | = | tan8; |v;+ 0 v+ | coste, | v
Bl L@ | cos?; | . B
Hence,
I~ | 0 0 |
C; (y;(t)) = | tané; 0 cos* @,
| 0 cos’d; 0

Ditferentiating the Chen—Fliess series, equating it to the
formal extended system and substituting for the fictitious in-
puts results in the ordinary differential equation,

jl 1 @ O
|l = |4 1 6
e o1
g 0 I e

P ().

. cos? @) 0
Due to the identical and simple kinematics of each robot, using
the result from Theorem 3.1 is simply a matter of computing
the nominal trajectory for each robot and substituting it for
7 .(f) and in the components of C;™*.

We assume that the robots are initially in a square formation
centered about the origin a distance of unity apart. The robots
are to follow a linear path g(f) = [f,f,0]" for a time f €
[0, 1] with the orientation of the square rotating by an angle .
The step size for this example was computed experimentally.
It was determined that four steps would be necessary to ensure
collision-free movement. The Philip Hall coordinates tor robot
1 were computed. They were then used by the other robots to
compute their Philip Hall coordinates.

Figure 4 displays a simulation of the four robots. Fig-
ure 4(a) displays the robots’ initial and final positions shown
as ‘0’ and ‘x’, respectively. Figures 4(b)-(e) display the mo-
tion during each of four subtrajectories necessary to move to
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Fig. 4. (a) Initial and final configurations shown as ‘0" and X, respectively; (b)—(e) display the motion plan in four steps to avoid
collisions; (f) displays the combined motion plan of all four steps.
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Fig. 5. The MICAbot interface board with sensor boards.

the final position without a collision. The final position and
overall motion of the robots is shown in Figure 4(f).

One of the MIC Abots used for the experimental implemen-
tation is illustrated in Figures 5 and 6. The body of the MI-
CAbot is one single unit and supports the interface board, bat-
tery pack and motors. The body is constructed out of a light-
weight polymer using a stereolithography. The wheels of the
MICAbot are also made fromthe same material. The MICAbot
is a two-wheeled robot, where each wheel is 3.3c¢m in diame-
ter. Each wheel has 12 evenly spaced magnets embedded in its
interior face (see Figure 6). MICAbots are actuated using two
modified submicro servo-motors that provide 25 oz-inches of
torque. These modified servo-motors function as direct drive
DC gear-headed motors that drive the MICAbot at a maximum
velocity of 30 cm/s. Each motor is controlled by a pulse-width-
modulated (PWM) signal, which allows us to control the an-
gular direction and velocity of each wheel.

The MICAbot uses the MICA platform for its central
processing and communication. Its central processor is an
ATMEGAIO3L running at 4 MHz. This microcontroller has
128 kB of memory and 4 kB of RAM (Hill and Culler 2002).
We use two PWM channels provided by the microcon-
troller, PWMIA and PWMIB, to control the DC motors. The
PWM frequency is 4 kHz with 2048 steps between the max-
imum positive and negative voltages. Additionally, it has an
AT90LS2343 flash-based microcontroller which can be used
for wireless reprogramming.

An operating system has been developed for this platform
called TinyOS (version 0.6) (Hill et al. 2000; Hill and Culler
2002; Mainwaring et al. 2002). The TinyOS operating sys-
tem is micro-threaded and designed specifically for embed-

No

I P

e |

Fig. 7. Flowchart describing the motion planning program.
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Rigid Body Motion Planning Application
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Fig. 8. Schematic showing the structure of the motion planning program.

ded processors. It provides an object-oriented approach to em-
bedded programming and reusable encapsulated software for
controlling the low-level hardware of the system. TinyOS has
the essential attributes needed for real-time embedded control,
making it ideal for the MICAbots.

Communication is accomplished via an RF Monolithic
TR1000 transceiver at rates of up to 115kB (Hill et al. 2000;
Hill and Culler 2002). The MICA platform also has an external
UART and SPI port. A DS2401 silicon serial number provides
each MICA platform with a unique identification number (Hill
and Culler 2002).

The radio board was designed to enhance the networking
capabilities of the existing MICAbot. An ATMEGAI103L mi-
croprocessor 1s used as the main processor on the radio board,
which is the same processor as the main processor on the
MICA. A separate radio transmitter and receiver are used to
send and receive packets. The transmitter module 1s a TXM-
900-HP-II by Linux Technologies and the receiver module is
a RXM-900-HP-I1I. They operate using frequency modulation
in the 902-928 MHz band and can establish a radio link for
different channels or frequencies for added flexibility. Data re-
ceived and transmitted through the radio board is handled by

the UART and a time interrupt. Advantages of using the UART
are that it synchronizes itself to incoming data for each byte
transmitted and it includes a start and stop bit for switching
of the data transmission in order to keep the receiver circuits
well biased. Furthermore, all these operations, including error
detection, are handled by hardware freeing the processor for
other tasks.

The primary software structure used for motion planning
and communication between the MICAbots is a finite state
machine. Each state is constructed with one initiating com-
mand and two exit events, a timeout event and a complete
event. Timeouts are to prevent deadlock and usually reset
the program. State events are sent to the finite state machine
and are used to determine which states are active. Figure 7
presents the flowchart describing the program. Figure 8 dis-
plays a schematic of the structure of the program. The pro-
gram’s structure can be viewed as a hierarchy of subprograms.
On the lowest level are programs directly controlling the hard-
ware. The next level are timers, the motion driver and the
odometry controller which interact directly with the low-level
hardware components. On the highest level is the motion plan-
ning application.
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Fig. 9. (a) The starting formation of four MICAbots; (b)-(f)
the formation after 2, 4, 6, 10 and 15 steps, respectively.

The implementation of the piecewise constant motion plan-
ning algorithm was tested on formations consisting of 2, 3 and
4 robots. Figures 9(a)—(f) display a rotation of a tight square
formation by 90 degrees with no translation. MICAbots are
placed in each corner of the square approximately 7.5” apart.
The four MICAbots were programmed with their initial po-
sition relative to the center of the formation in a global co-
ordinate frame. This example demonstrates that the motion
planning algorithm works; however, there is significant drift
as the number of steps increases. This drift can mainly be at-
tributed to the low resolution of our position sensor (the widely
spaced Hall-effect sensors on the wheels). We would expect
significant improvement by using high-resolution encoders.

7. Conclusions and Future Work

In this paper, we have presented a distributed motion plan-
ning algorithm for rigid body formations consisting of a large
number of robots. The motion planning algorithm developed
here is an extension of the piecewise constant motion planning

algorithm by Lafferriere and Sussman (1993) that exploited
symmetries in the system to reduce the computational burden

for motion planning. In particular, for a symmetric system, the
most computationally intense part of the motion planning al-
gorithm must be executed only once for a set of symmetric
robots.

The formation control algorithm was simulated and ex-
perimentally verified. A simulation of a group of mobile ro-
bots was used to demonsirate the ufility of this algorithm. A
novel centimeter-scale robot designed for research in large-
scale distributed robotics and mobile ad hoc sensor net-
works was presented. MICAbots are inexpensive, and provide
enough flexibility for a wide range of experimental goals. The
MICAbot has an additional radio board, which increases its
networking capabilities and provides additional I/O ports.
These robots were used to experimentally test the motion plan-
ning algorithm. Experimental results show that the formation
control algorithm can be used to control the formation of a
mobile wireless network.

Future plans include using position and orientation states in
the shared memory model in order to create a better method
for collision avoidance. Future work on theoretical issues in-
clude investigating the optimal control problem for symmetric
distributed systems.
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