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Abstract— This paper studies bifurcations and multiple so-
lutions of the optimal control problem for mobile robotic
systems. While the existence of multiple local solutions to an
optimization problem is not unexpected, the nature of the
solutions are such that a relatively rich and interesting structure
is present, which potentially could be exploited for controls
purposes. In particular, this paper studies a group of unicycle-
like autonomous mobile robots operating in a 2-dimensional
obstacle-free environment. Each robot has a predefined initial
state and final state and the problem is to find the optimal
path between two states for every robot. The path is optimized
with respect to the control effort and the deviation from a
desired formation. The bifurcation parameter is the relative
weight given to penalizing the deviation from the desired
formation versus control effort. Numerically it is shown that
as this number varies, bifurcations of solutions are obtained.
Additional theoretic results of this paper relate to the symmetric
properties of these bifurcations and the number and existence of
multiple solutions for large and small values of the bifurcation
parameter. Understanding the existence and nature of multiple
solutions for optimization problems of this type is also of
practical importance due the the ubiquity of gradient-based
optimization methods where the search method will typically
converge to the nearest local optimum.

. INTRODUCTION

importance of each behavior. The virtual structure methods
involve the maintenance of a geometric configuration during
robot movement using the idea that points in space should
maintain a fixed geometric relationship. If robots behaved i
this way, they would be moving inside a virtual structure.

In this paper, the problem addressed is to control a
formation of robots moving along an optimal path between
an initial configuration and a final configuration. The path
is optimized with respect to a combination of the control
effort and the deviation from a desired formation. Using
standard methods from optimization, since each robot has
its own predefined initial state and final state, the prooedur
to find the optimal path is to solve a boundary value problem
(“BVP”) for a set of second order ordinary differential
equations (“ODEs").

The existence of multiple nontrivial solutions of BVPs
for nonlinear second order ODEs have been investigated by
many authors. For example, for

X'+at)f(x) = 0
x0) = 0
x(1) = 0,

Distributed systems with multiple agents have been the . _ o
focus of many research efforts in recent years. The apphie properties of the solutions depend on the limiting behav
cations of distributed systems are everywhere: robotic ufr of the function f(u). Erbe and Wang [14] studied the

derwater vehicles [1], satellite clustering [2], electpiower
system [3], search and rescue operations [4] etc.
The approaches to the multi-robotic formation contro

problem are many and varied. Roughly, they can be cate-

gorized into three groups: leader-follower methods [5]—[7
behavior-based methods [8]-[10] and virtual structurehmet
ods [11]-[13]. In the leader-follower methods, each rotast h

existence of positive solutions of the equation with linear
boundary conditions. Also, if

fo = Ilim @
s—+0 S

fo = lim @,
s—+0 S

at least one designated leader. Leaders can be some rodbgy showed the existence of at least one positive solution
in the group or virtual robots that represent pre-computeied two cases, superlinearityfd = 0, f., = «) or sublinearity
trajectories supplied by a higher level planner. The otheifo =, fo = 0). In [15], Erbe, Hu and Wang showed that

robots are followers that try to maintain a specified retativ

there were at least two positive solutions in the case ofrsupe

configuration to their leaders. Behavior-based methodw drdinearity at one end (zero or infinity) and sublinearity ag th
inspiration from biology. In nature, animals in a group carpther end. Naito and Tanaka [16] and Ma and Thompson [17]
combine their sensors to avoid their predators and searghtablished precise condition concerning the behaviohef t
sufficient food. The behavior of each robot is prescribe¢atio f(s)/s for the existence and nonexistence of solutions.
and the final control is derived by weighting the relativelheir main results were that the BVP had at ldasblutions

if the ratio f(s)/s crossed thek eigenvalues of the associ-
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order ODEs, Marcos d®, Lorca and Ubilla [18] used
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This paper first presents numerical results illustrating bi The cases considered in this paper are limited to the
furcations and multiple solutions of the BVP associatedhwitboundary conditions
the optimal control problem. Then, it presents a theorktica B —

result relating to the existence of multiple solutions ie th x(0) c+(i-1)d, ©)
limiting cases of small and large values of the bifurcation x(1) = 0,

parameter. Finally, it proves the existence of symmetrig-so yi(0) = 0O,

tions which guarantees that for any solution, a correspandi yi(l) = c+(i—1)yd,

symmetric solution exists. The practical benefit of thisutes
is that if a solution is found numerically, the symmetricwherecis a constant. These boundary conditions correspond

solution can be computed from that algebraically. to an initial formation with the robots arranged along e
axis starting with the first robot at at= c with a distance
Il. PROBLEM STATEMENT d between each robot and a final formation with the robots

We adopt a simplified version of the robotic unicycle a@rranged along thy-axis starting with the first robot gi=c

a prototypical model. The simple kinematics of this kind oiiN'th 6: dlts,k;[a:lg? tohfd t.)e}[\./v?en galfh IFO]POL Itt. IS |mportantt
robot are described by 0 note that if the initial and final formations are no

parallel, then straight-line trajectories satisfying tuaindary
X = u (1) conditions will not, in general, maintain the desired dis&
Vo= w between the robots.

The problem is to find the controls, (t), u, (t) for each robot IIl. BIFURCATION RESULTS

i which steer a formation of robots of this type from the start For a distributed system containing robots, when the

configuration to its goal configuration, while maintainingWeighting constank is given, an optimal trajectory can be
a rigid body formation at the beginning and end of thé@btained numerically by solving the equations of motion
trajectory and minimizing the global performance index 9iven by Equation 2 using the shooting method (see [19]).

A. Solutions for a five robot system

ty N 2 2 n—-1 _
J :/0 i;((uil) +(Uip) ) + i;k(di _d) dt The figure on the left in Figure 1 illustrates three different
B B solutions that satisfy the equations of motion in Equation 2
subject to the robotic kinematic constraints in Equation land boundary conditions in Equation 3 for= 245, c =6
wheren > 2 is the number of robots = (% —X+1)>+  andd = 2 for a formation of five robots. Since the differences
(Vi —i+1)?) Y2 is the Euclidean distance froith to (i+1)th  among these trajectories are difficult to distinguish orhsuc

robots, d is the desired distance between two adjacerf small graph, the figure on the right illustrates them for the

robots, andk is a non-negative weighting constant. Thethird (middle) robot with the difference magnified by a facto
cost function minimizes a combination of the control efforigf 10.

(first summation) and the deviation from a desired formation

(second summation). 14 10
Applying Pontryagin’s maximum principle to solve the
optimal control problem, we obtain the optimal inputs o \\ 8
1 8 \\ 6
Uil = épil S ] \‘ \\\ >
1 4
Uiz - épiga 4 \\ \ \\
NN z
and equations of motion
1 00 2 4 6 8 10 12 14 00 2 4 6 8 10
. 1 Fig. 1. Optimal paths for the five robot system wikk= 24.5.
yi = épiz
o 2k —x-1) (di1—d)  2k(x —x1) (di —d) Sincek is a parameter in differential equations, it will
Pip = di_g + di clearly affect the solutions. In fact, &sis varied, the nature
_ KV —vi ) (d 1—d)  2K(V —v: d—d and number of solutions changes. Section IV shows that there
pi, = v y'dl)( -1-d) + O y'al)( ' ) is a unique solution whek is small and in the limit ak
i—1 i

approaches infinity, the number of solutions also appraache
Because they correspond to the robots at the end of thdinity. In order to present the relationship between thewnu
formation, the last two equations in Equation 2 only havéer of solutions andk, we construct a bifurcation diagram
the second term when= 1 and they only have the first term as follows: since a straight line connecting end points ¢ th
wheni =n. optimal solution wherk = 0, we will designate that as a



nominal trajectory. One measure of the difference between
solutions would be their deviation from the straight line
nominal solution at some specified time. As long as the
different solution are not intersecting at that time, thizud 0 Oz oop
provide a measure of difference between different solgtion 01 \ 004
In all the bifurcation diagram illustrated subsequently; 015 -0.06
0.25 is used. For different formations and different type ., -0.08
of robots, a different value of may be a better choice; = . 01 /
however, for all the systems studied in this paper, 0.25 03 o AN
appeared to adequately represent the relationship ameng th -o.3s Sy 016
solutions. Also, alternative measures of differences betw -0.4 -0.18
the solutions may, in general, be superior, this simpleaghoi 0 5 10 15 2 25 0o 5 10 15 20 25
appears to suffice for all the cases considered in this paper.
The plots in Figure 2 illustrate this measure of the differ- Robor. four
ence between solutions for each robot in the five robot system 018
ask is varied from 0 to 25. In these bifurcation diagrams, 0.16
the first robot is the one with the shortest trajectory, the 0.14 )
fifth robot is the one with the longest trajectory and they are 012 \
ordered sequentially. Observe that the bifurcation dimgra , 01
for robots 1 and 5 are symmetric to each other alsbsit0 008
axis and the bifurcation diagrams for robots 2 and 4 are . ggj
similarly symmetric (even though each follows a trajectory 0.02
with a different length). Finally, the bifurcation diagraior o1 0
robot 3 is symmetric to itself about= 0 axis. °© 5 10 15 20 2 o 5 1015 20 25
A close analysis of the actual trajectories that the robots
follow illustrated in the figure on the right in Figure 1
reveals that the trajectories themselves ao¢ symmetric 0.4
(the two trajectories with pronounced curves intersect, bu 035
not at a point on the straight line solution). A measure thati °3
based upon the deviation from the nominal solution appears %%
to be necessary to determine the real symmetric nature of °?
the solutions. Section V contains the analysis that these O;i

symmetries must, in fact, exist. /
0.05
B. Solutions for a seven robot system 0 s 10 15 20

13

T

Figures 3 and 4 illustrate similar results for a seven robot
system. Figure 3 illustrates the trajectories whes 24.5, Fig. 2. Bifurcation diagrams for a five robot system.
c=4 andd = 2. Again, because the difference is hard
to distinguish in the small left figure, the right figure in
Figure 3 illustrates the trajectory with the deviation freime
nominal trajectory for the fifth robot magnified by a factor
of ten. Figure 4 illustrates the bifurcation diagrams foe th

solutions versuk constructed in a manner identical to that 16 12 N

of the system of five robots. Observe that, similar to the 14

. . . 8
7 are symmetric to each other abalit= 0 axis as is the \;

bifurcation diagrams for robots 2 and 6 and robots 3 and 5, | \\ 6

and the bifurcation diagram for robot 4 is symmetric to ftsel . N\

\ 10 \\
five robot case, the bifurcation diagrams for robots 1 and 1> \k \ \\\\

\ 2

N\ |

\
aboutd = 0 axis. N\
\

IV. ASYMPTOTICANALYSIS 2

In the two cases of very smdtland very largek, we may 0 2
. . . . 0 2 4 6 8 10 12 14 16 2 0 2 4 6 8 10
use an asymptotic expansion to investigate the effektaf . .
the number of solutions to the BVP. As will be shown, this
analysis is consistent with the existence of a unique soiuti Fig. 3. Optimal paths for a seven robot system vtk 23
for small values ofk and many solutions for very larde

which is the pattern indicated in the numerical bifurcation

12
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results that show an increased number of bifurcations and
an increased number of solutionslagets large.
A. Small k

We use a standard perturbation method (see [20]) to solve
equations 2 fok <« 1. If we let

Xi = Xi,0+k)q71+k2Xi72+k3Xi73+...+iji,j+...7

i = Yi,0+kyi,1+k2yi,2+k3yi73+..._}_klyi’j +oe-

P, = pil.,0‘|‘kr—hl,l"‘|(2pi1_’2—|—kar_)il:’-|-..._|_|(J-pil_j_A'_...7

pi2 = pi2A0+kpz,l+kzpi2A2—|—|C°’pi273+---+kjpi2’j+...7

and substitute into the equations of motion (Equation 2), a

set of linear differential equations is obtained for eactvgro
of the expansion parametkr Space limitations prevent the
inclusion of the entire resulting equation, but we can cdesi
it term-by-term in powers ok.

Specifically, if z represents eitheix or y, then the
following table illustrates the resulting recursive sture
of the equations. Any entry that is zero corresponds to
a variable that is identically zero. Furthermore, as is the
typical case in an asymptotic expansion, any variable only
depends on lower order ones, which in this table correspond

to variables to the left of it. Specifically, we have
Zio Zi1 Z2 Zim-1 Zim
210 21 212 1 m-1 Z1m
20 0 22 Zom-1 Zm
Z30 0 0 Z3m-1 Z3m
Zno | O 0 - 0  Zum
Zh-20 0 0 —3m-1 —Z3m
Zn-10 0 ~22 ~Zm-1 —2Zm
Zn0 211 —2412 —Z1m-1 —Z4m

where m is the smallest integer Targer than or equal to
3. So, if z; is known and sincez j (j > i) depends on
Z-1j-2,4-1j-1,%,)-2,%,j-1,%+1,j-2,Z+1,j-1, We can solve
them in the order off =i+1,i+2,---.
In detail, the j =0 (K°) terms gives the set of linear

equations

with boundary conditions

X

Yi

,0

,0

Piy 0
piz,o

1
= 3 Piy,0,

1
- é piz,Oa

= 0,
= 07

X10(0) + (i — 1)d

0
0

y1o(1) + (i —1)d,



which have solutions Since all the terms in the expansion may be solved by
direction integration of functions that are continuous and

X0 = —%o0(0)t+X%0(0), bounded, a solution for each term exists. Hence kfar 1,
Vio = VYio(lt, this asymptotic analysis give a computable construction fo
po = —2%o0(0), the solutions, and also indicates that the solution is wiqu

In other words, for smalk, only one solution exists.

Pio = 20(1).

Naturally, these are straight lines, which is expected Whe% Large k

the only component of the cost function is the control effort For largek (k < 1), a similar asymptotic expanS|on is

and the Oth order solution does not contkin used to solve equations 2 but insteackpt = k is used as
In all cases (all powers df and all robots), an analysis the expansion parameter. Let

of the resulting expansion shows that = —X,+1-ij and

oy : 2, 3. iy
Vi = Yni1ij. Also,for 1< j<i<®lx;=Oandyj= X = X0T&ate&XateXgt e+,
0 (the higher order terms for the “outer” robots are zero upyi = yi70+£yi,l+EZYi,2+£3Yi.3+"'-‘rejyi’j +e
to a certain order. Hence we only need to consider the Casgs — p,o+ep; 1+£2pi12+53pi1.3+"'+€j P+
where 1<i < 1 andi < j. o = D +£p-7 2D 0t E30, 5t £ e
In the case wherqa =ji=1, 2 = F20 12,1 12,2 12,3 1H2,) :
1 We obtain the following equation for leading order &f
X1 = 5Pl . 1
. 1 Xo = Epil,O
Y1 = épll,z _ 1
1 Yio = Epiz,o
Ppr,1 = 2d(t—-1) (1— 2t22t+1> o - X (Xi.0—Xi—1,0) (di—1,0—d) N 2k (%0 —Xi+1,0) (dhio—d)
_ B 1 di_10 - dio -
PL1 = —2dt (1_ 2t22t+1> . 0 — 2k (Yi,O_YiEi.l,Ol)o(difl,O—d) N 2k (yi,o—yial(,)o) (di.O—d).
i—1, i

Since the right hand sides of the last two equations ar
continuous and bounded functionstobn the interval.y =
[0,1], they are integrable and the integrals are differentiable
(see [21]), which indicates the integrals are continuous.
Hencexy 1, y1,1 exist and are unique since the right handvhich transparently shows that the limit for largesimply
side of thep equations may be directly integrated twice torequires that the distance constraint be exactly maindaine
obtain thex andy solutions. Since we integrate twice, there Since the third and fourth equations are algebraic (as is
are two undetermined constants, which can be determing@juation 4), then the costatgsare unconstrained and hence

Ei’he last two equations may be simplified to

(X.0—X_10)2+ (Yio—Yyi 102 =0, (4)

by the two zero boundary conditions. any path that maintains the desired distance between the
Wheni=jandj>1, robots and satisfies the boundary conditions is a solution.
. 1 This makes intuitive sense: in the limit ks— o, the control

Xj = 5P effort becomes negligible relative to the distance coirdtra
1 Hence, in the limit of very largd, the asymptotic analysis

Vi = gPe indicates that there is an infinite number of solutions. Aglo

b = _2Xi71_71+2t(*yi—lﬁj—l*H(xi—lﬁj—l+Yi—1,j—l)) as th_e_ separation_ d_istance is ma?ntain_ed and the boundary
v . (2tZ—2t+1)3/2 conditions are satisfied, any path is optimal.

Pioj = ZYifl,j—l'i‘Z(t DI ETERALE 4 21+y. 1))\ SYMMETRIES IN THE BIFURCATION DIAGRAMS

(22— 2t+1)¥

This section proves that the symmetries found in
The right hand sides of the last two equations are th#ée numerically-constructed bifurcation diagrams must be

sum of integrable functions or product of them, so they arpresent. This is of practical value because it reduces the

differentiable (see [21]). Similar to the argument fgn, and  computation time necessary in a search over multiple solu-

y1.1, Xii andy;; therefore exist and unique. tions since a second solution can always be found from any

Space limitations prevent the detailed inclusion of theolution that is obtained (unless the solution is symmetric

expressions for the off-diagonal terms. However, they haweith itself).

the same essential structure that the right hand side of theSupposéxi,x2, -, %, Y1,¥2, -+ ,¥n) is a solution of Equa-

co-state equations is a linear combination of the lowerordéion 2 with the boundary conditions in Equation 3, and let

solutions in the expansion. Since all the lower order sohgi

are continuous and bounded functions tpfthey may be X o= (X%)i+ ()i,

directly integrated to compute the actual solution. Vi = (¥s)i + Ya)i,



where Proposition 1: Supposer(t) is a fixed point of equation 7.

()i = (c+(i—1d)(1-t), Let

(ys)i = (c+(i—21)d. E)fd;m-l—i

Yd)n+1-i = —

The subscriptss indicate a “straight-line” solution and R i A A _
the subscriptsd indicate the component of the solu-and\f(t):((Xd)lv(yd)l""’(Xd)n»(Yd)n% thenv(t) is also a

; : “ansiatinn? ; ; fixed point of equation 7
tion that is a “deviation” from the straight line. If Broof: Theqproof is by direct substitution. Substituting

Xd)i (8)

v(t) = ((Xa)1, (Ya)1, -+, (Xa)n, (Ya)n), then (Xa)i,(Ya)i, i = for the definition of the hat terms for each gives:
1,2,---,n, satisfy the following equations with homogeneousd \/( a0 — ) )2+( T Oah— ) )2
boundary conditions: = - Xd)i — (Xa)i+1 - Ya)i — (Ya)i+1
—(X)it) = fi(v(t)) (5) = \/(7a+at*(id)n+1—i+()2d)n—i)2+(7at7(yd)n+1,i+(yd)n7i)2
—(Ya)it) = gi(vt), = c\i/(_d+dt+(f(d)n—i—()?d)ni+1)2+(—dt+(§’d)n—i—(9d)ni+1)2
where fy = hy, g1 =1, fo=—hn 1, go = —In1, and for S -
= (2.3,,n-1) no= (1) (G- i)
fi = hi—hi_q, = (f‘_ 71) (—d+dt— (Rg)ns1-i + Ra)n-i)
g = li—li1 a o
= ~— —1) (=d+dt+ Ra)n-i — Ra)n-i
where, for alli = (1,2,---,n) ( i >( e+ Ba)ni = (Radn-i4)
e = b
d - = _
hi = (al - 1) (—d+dt+ (Xd)l - (Xd)i+1) ) i — (dgl _1) (_at+(yd)i _ (yd)i+1)
a A d —
i = (d—i —1) (—dt+(ya)i — (Ya)i+1) » = ( Adi_ —1) (—At— (Ja)nsai + (Ja)ni)
o = ((-d+dts e - Oain) (B G- 0aie)?)’ = (3 1) (8 G- Gadne)

The system (5), is equivalent to the system of integralyng

equations A A
L f1 = hh=hy1=—fs
(Xd)i = A G(t,S) fi (V(S))dS, (6) 01 = l1=Il1= A—gn A
1 fi = hi—h_1=hyji—hn1i=—"Thi1 i
ba)i = 0 G(t,9)gi(v(s))ds g = li—liia=li—hni=—Gniri
where G(t,s) is the Green's function of the differential fn = —hn1= ihl =-f
operator —(i = 0 with homogeneous boundary conditions, O = —Ilha=-li=-0
whereu = xg Or u=yy, and
_ < which give us
Glt,s) = t(1—s9), t<s . )
s(1-t), t>s fi = —fapai,
If Ai, Bi andF are maps such that i = —Gni1-i.
1 for all i from O ton. Then
AV(t) = k/ G(t,s)fi(v(s))ds ) ] .
0 ' (Re)i = — (Xd)msai :7/0 G(t,s)fnﬂ,ids:/o G(t,s) fids

1
Bv(t) — K /0 G(t,s)gi(V(s))ds
(

1 1
V) = (AWOBVO), AW BWE, e = J, Ot9mads= [ 69gds

Hencev(t) = (X4)1, (Jd)1," -, (Xd)n, (Yd)n) is a solution of

then determining a solution to equation (6) is equivalent tagyation 7. -
finding a fixed point to equation Equation 8 gives an algebraic expression for the symmetric
Fy(t) = v(t). @) solutions, which is useful because the theorem proves they

satisfy the boundary value problems and hence reduces the
The following proposition proves that if a solution iscomputational burden of determining additional solutions
known, then the “opposite” deviation from the straightlin Note that the relationship is not simply the opposite déwmat
solution is also a solution for the robot on the other side drom the straight line solution, but is the opposite dewiati
the formation. from the straight line for aifferentrobot.



VI. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

This paper considers the optimal control problem for &0
formation of multiple robots. The trajectory of each robot
is optimized with respect to a combination of the controf11]
effort and the deviation from a desired formation, which in
this paper is simply a formation that maintains a specified
distance between adjacent robots. The paper first presepnty
numerical results illustrating the structure of bifurca and
multiple solutions of the BVP associated with the optima}; 3,
control problem. Then it shows that an asymptotic analysis
indicates that there is a unique solution wheis small and
in the limit ask approaches infinity, the number of solutions[14]
also approaches infinity. Then, it presents a theoreticailtre
relating to the existence of symmetric solutions. It guseas [15]
that for any solution, a corresponding symmetric solution
exists. The practical benefit is that if a solution foundie]
numerically, the symmetric solution can be computed from
that algebraically. Also, if a gradient-based search mithqg,,
is used, understanding of the structure of the relationship
among multiple solutions is necessary to find the desired
resul.t Finding multiple solutions may be desirable if thqlg]
cost function does not include all the optimization créeri
for example, if obstacles are present but not accounted far9 ]
in the cost function.

(9]

B. Future work [20]

Future work is directed in several areas. The resul{gl]
are likely to be much more general than the particular
case presented in this paper. Determining the most general
classes of robots and formations that maintain the symmetry
properties of the results and similar bifurcation struetis
of interest. Also, the asymptotic analysis is only of any use
for the limiting values foik. Determining conditions for the
existence of a bifurcation for any value kf similar to that
for initial value problems, would be useful.
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