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Abstract: Analysis and control of underactuated mechanical systems in the nonzero
velocity setting remains a challenging problem. In this paper, we demonstrate the
utility of a recently developed alternative representation of the equations of mo-
tion for this large class of nonlinear control systems. The alternative representation
gives rise to an intrinisic symmetric form. The generalized eigenvalues and eigen-
vectors associated with the symmetric form are used to determine control inputs
that will drive a class of mechanical systems underactuated by one control to rest
from an arbitrary initial configuration and velocity. We focus on systems whose
symmetric form is indefinite for almost all configurations. Finally, we illustrate the
stopping algorithm by presenting numerical simulation results for the planar rigid
body, snakeboard and planar rollerblader.

1 Introduction

Mechanical control systems form a large and important subclass of nonlinear
control systems. The areas of application of control theory for mechanical sys-
tems are diverse and challenging. Such areas include autonomous aerospace
and marine vehicles, robotics and automation, mobile robots, and constrained
systems. The formalism of affine connections and distributions on a Rieman-
nian manifold provides an elegant framework for modeling, analysis and con-
trol. This framework has given rise to new insights into nonlinear controllabil-
ity in the zero velocity setting motivating stabilization, tracking and motion
planning algorithms [1]. For fully actuated mechanical systems, it is possible
to provide a comprehensive solution to the problem of trajectory tracking [10].
In contrast, motion planning algorithm for underactuated mechanical systems
is still not well understood. Due to the challenging nature of these problems,
many of the existing results have been limited for example to ad hoc gait
generation algorithms [9] [8], ad hoc configuration to configuration algorithms
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Fig. 1. A schematic of the planar rollerblader.

with zero-velocity transitions between feasible motions [3] and numerically
generated optimal trajectories [4].

This paper is also closely related to several efforts that have been made
to obtain conditions in the zero velocity setting from properties of a certain
intrinsic vector-valued quadratic form which does not depend upon the choice
of basis for the input distribution [2], [6]. It has been observed that vector-
valued quadratic forms come up in a variety of areas in control theory which
has motivated a new initiative to understand the geometry of these forms [7].

1.1 Motivating Example

As a concrete example, take the planar rollerblader illustrated in Figure 1.
The schematic drawing illustrates the kinematics and actuator locations of
the model. Note that each leg is composed of two links which are connected
by a translation joint at the knee and a pin joint at the hip. The foot is a roller
blade which is constrained to the plane in such a way that prohibits motion of
the foot perpendicular to the blade. A single actuator capable of generating
torque in both the clockwise and counterclockwise directions is placed at each
pin joint. Another set of linear actuators are placed at each translation joint.
The planar rollerblader has five degrees of freedom and only four actuators.
This is an example of an underactuated control system. Whenever fewer
actuators are available than degrees of freedom, various control questions arise.
For instances, it is not immediately clear whether the moving rollerblader can
be “stopped” using the limited control authority. If it cannot be stopped,
then the set of reachable velocities does not include zero velocity. In this,
and other underactuated mechanical systems, existing geometric control theory
does not provide a general test for stopping and more generally speaking, the
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set of reachable velocities from a nonzero velocity is not well understood. The
modern development of geometric control of mechanical systems has been
limited, for the most part, to the zero velocity setting. Yet the underlying
mathematical structure is that of second-order dynamics where the state of
the system is defined by a configuration and velocity. Theoretical results that
are limited to zero velocity states do not provide an adequate characterization
of the behavior of mechanical systems and limits the development of motion
planning algorithms.

1.2 Statement of Contribution

The fundamental approach of this paper is to exploit the inherent geometric
structure for the purpose of stopping an underactuated mechanical system.
We use the governing equations of motion of the mechanical control system
to partition or foliate the velocity-phase manifold (e.g. set of all configura-
tions and velocities). This partitioning has given rise to two key theoretical
results which have been the main topics of recent works [13], [14]. First, we
have identified an intrinsic vector-valued symmetric bilinear form that can be
associated with an underactuated mechanical control system. Second, we have
provided computable tests dependent upon the definiteness of the symmetric
form to determine if the system can or cannot be driven to rest.

Our theoretical results are useful for two reasons. First, such results are
necessary conditions for a stopping algorithm. If zero velocity is not contained
in the set of reachable states then it is impossible to specify a control law that
will drive the system to rest. Second, these results are useful design tools which
provide constructive strategies for actuator assignment and help to make the
control scheme robust to actuator failure. The task of actuator assignment
is always a balance between the sophistication of the system design and the
associated complexity of the controller. For example, a system which is fully
actuated requires a simple control scheme to drive it to rest. In contrast, if
the system is underactuated even by just one control, a control scheme must
take into account the underlying geometry or nonlinearities of the geometric
model. Such a control scheme is theoretically challenging due to nonzero drift
which indicates a component of the dynamics that is not directly controlled.
These systems are not amendable to standard techniques in control theory.
However, underactuated systems do appear in many practical applications
resulting from design choices motivated by cost reductions or in some cases
they are the result of a failure in fully actuated mechanical systems.

The main contribution of this paper is a stopping algorithm for mechan-
ical systems underactuated by one control. We focus our analysis on such
systems whose symmetric form is indefinite for almost all configurations. The
choice of control inputs are dependent upon the generalized eigenvalues and
eigenvectors associated with the symmetric form. The stopping algorithm is
applied to the planar rigid body, snakeboard [9] and rollerblader [8]. For each
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system, we provide a schematic drawing, the geometric model, our alternative
representation and simulation results.

2 Geometric Model

2.1 Mechanical Control System

We consider a simple mechanical control system with no potential to be com-
prised of an n-dimensional configuration manifold M ; a Riemannian met-
ric G which represents the kinetic energy; m linearly independent one forms
F 1, . . . , Fm on M which represents the input forces; a distribution H on
M which represents the constraint; and U = R

m which represents the set
of inputs. We do not require the set of inputs to be a subset of Rm. This
allows use to focus on the geometric properties of our system that inhibit
or allow motion in the foliation as opposed to a limitation on the set of
inputs. We represent the input forces as one forms and us the associated
dual vector fields Ya = G♯(F a), a = 1, . . . ,m in our computations. For-
mally, we denote the control system by the tuple Σ = {M,G,Y, V, U} where
Y = {Ya | Ya = G♯(F a) ∀ a} is the input distribution. Note we restrict
our attention to control systems where the input forces are dependent upon
configuration and independent of velocity and time. DoCarmo [12] provides
an excellent introduction to Riemannian geometry. A thorough description of
simple mechanical control systems is provided by Bullo and Lewis [1].

It is well known that the Lagrange-d’Alembert principle can be used to
generate the equations of motion for a forced simple mechanical system in
coordinate invariant form. If we set the Lagrangian equal to the kinetic energy,
then the equations are given by

∇γ̇(t)γ̇(t) = ua(t)Ya(γ(t)) (1)

where ∇ is the Levi-Civita connection corresponding to G, u is a map from
I ⊂ R 7→ RM , γ : I → M is a curve on M and t ∈ I. Therefore, a controlled
trajectory for Σ is taken to be the pair (γ, u) where γ and u are defined on
the same interval I ⊂ R. Note the usual summation notation will be assumed
over repeated indices throughout this paper.

Given a constraint distribution H of rank k, we may restrict the Levi-
Civita connection ∇ to H [11]. Bullo and Zefran [5] showed that given two
vector fields X and Y on M then the so-called constrained affine connection
∇̃ is given by

∇̃XY = P (∇XY )

where P is the orthogonal projection TM 7→ H . The latter approach provides
a computationally efficient method and is used to generate the coordinate
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expression for the constrained affine connection for the roller racer and the
snakeboard.

The natural coordinates on TM are denoted by ((q1, . . . , qn), (v1, . . . , vn))
where (v1, . . . , vn) are the coefficients of a tangent vector given the usual
basis { ∂

∂q1 , . . . ,
∂

∂qn }. We will denote a point in TM by vq. We may lift the

second-order differential equation defined by (1) to TM . This gives rise to the
following system of first-order differential equations on TM

dqk

dt
= vk, (2)

dvk

dt
= −Γ k

ijv
ivj + uaY k

a ,

where Γ k
ij is the usual Christoffel symbol and i, j, k = 1, . . . , n.

A critical tool used to analyze distributions and mechanical control systems
is the symmetric product. Given a pair of vector fields X,Y , their symmetric
product is the vector field defined by

〈X : Y 〉 = ∇XY + ∇Y X.

2.2 Alternative Representation

In this section we expand upon and adapt the definition of an affine subbundle
found in Hirschorn and Lewis [6]. We restrict our attention to configuration
manifolds that admit a well defined global set of basis vector fields however
our results generalize under appropriate conditions. The basic geometry of our
construction can be captured by assuming H = TM however we can always
relax this assumption by properly accounting for the orthogonal projection P .

Recall that an input distribution Y on M is a subset Y ⊂ TM having the
property that for each q ∈M there exists a family of vector fields {Y1, . . . , Ym}
on M so that for each q ∈M we have

Yq ≡ Y ∩ TqM = span
R
{Y1(q), . . . , Ym(q)}.

We refer to the vector fields {Y1, . . . , Ym} as generators for Y. Let Y⊥ de-
note an orthonormal frame {Y ⊥

1 , . . . , Y ⊥
n−m} that generates the G-orthogonal

complement of the input distribution Y. Note that even though Y⊥ is canon-
ically defined, we must choose an orthonormal basis. It is clear that {Yq,Y⊥

q }
forms a basis for TqM at each q ∈ M . Note that Y = {Y1, . . . , Ym} is a set
of m linearly independent vector fields while Y⊥ = {Y ⊥

1 , . . . , Y ⊥
n−m} is a set

of n−m orthonormal vector fields. This basis will be used to define an affine
subbundle and construct an affine foliation of the tangent bundle.

An affine subbundle on M is a subset A ⊂ TM having the property that
for each q ∈ M there exists a family of vector fields {Y0, . . . , Ym} so that for
each q ∈ U we have
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Aq ≡ A ∩ TqM

= {Y0(q) = Y ⊥
1 (q) + · · · + Y ⊥

n−m(q)}
+ span

R
{Y1(q), . . . , Ym(q)}.

An affine foliation, A, on TM is a collection of disjoint immersed affine sub-
bundles of TM whose disjoint union equals TM . Each connected affine sub-
bundle A is called an affine leaf of the affine foliation. Now let us apply this
framework to a simple mechanical control system.

Definition 1. Let (M,G, V,Y, U) be a simple mechanical control system with
the input distribution Y generated by {Y1, . . . , Ym} and the corresponding G-
orthogonal distribution Y⊥ generated by {Y ⊥

1 , . . . , Y ⊥
n−m}. An input folia-

tion AY is an affine foliation whose affine leaves are affine subbundles given
by

As(q) = {vq ∈ TM | 〈〈Y ⊥, vq〉〉 = s, s ∈ R
n−m}.

Remark 1. The input foliation is parametrized by s ∈ Rn−m. Note that when
s = 0, A0 = Y and A0(q) = Yq where Y is an immersed submanifold of TM
and Yq is a linear subspace of TqM . Thus, the input distribution Y is a single
leaf of the affine foliation.

Given a basis of vector fields {X1, . . . , Xn} on M , we define the generalized
Christoffel symbols of ∇ to be

∇Xi
Xj = Γ̂ k

ijXk.

Note that when Xi = ∂
∂qi we recover the usual Christoffel symbols of ∇. We

introduce the symmetrization of the generalized Christoffel symbols.

Definition 2. We define the generalized symmetric Christoffel symbols

for ∇ with respect to the basis of vector fields {X1, . . . , Xn} on M as the n3

functions Γ̃ k
ij : M → R defined by

Γ̃ k
ijXk =

1

2

(

Γ̂ k
ij + Γ̂ k

ji

)

Xk

=
1

2
〈Xi : Xj〉.

We may define the velocity vector γ̇(t) = γ̇i(t) ∂
∂qi of the curve γ(t) in

terms of the family of vector fields {Y,Y⊥}. The new expression for γ̇(t) is in
the form

γ̇(t) = wa(t)Ya(γ(t)) + sb(t)Y ⊥
b (γ(t)) (3)

where sb(t) = 〈〈γ̇(t), Y ⊥
b 〉〉γ(t). We now provide a local expression for a mea-

sure of a simple mechanical control system’s ability to move among the leaves
of the input foliation AY .
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Lemma 1. Let (M,G, V,Y, U) be a simple mechanical control system with an
input foliation AY defined above. The following holds along the curve γ(t)
satisfying (1):

d

dt
sb(t) = −1

2
wa(t)wp(t)〈〈〈Ya : Yp〉, Y ⊥

b 〉〉 (4)

−1

2
wa(t)sr(t)〈〈〈Ya : Y ⊥

r 〉, Y ⊥
b 〉〉

−1

2
sr(t)wp(t)〈〈〈Y ⊥

r : Yp〉, Y ⊥
b 〉〉

−1

2
sr(t)sk(t)〈〈〈Y ⊥

r : Y ⊥
k 〉, Y ⊥

b 〉〉

where a, p ∈ {1, . . . ,m}, b, k, r ∈ {1, . . . , n−m}.

Proof. Recall from the definition of an input foliation that

sb(t) = 〈〈Y ⊥
b , γ̇(t)〉〉. (5)

We could proceed by substituting (3) into (5) and differentiating taking ad-
vantage of the compatibility associated with the Levi-Civita connection. Al-
ternatively, we use the notion of a generalized symmetric Christoffel symbol.
It follows from the construction of Y⊥ that the bth component of Γ̃ b

ij along

the the orthonormal vector field Y ⊥
b can be expressed as a projection using

G.

We observe that (5) is quadratic in the parameter w(t). Now we relate
an intrinsic vector-valued symmetric bilinear form to the measure derived in
Lemma 1.

Definition 3. Let (M,G, V,Y, U) be a simple mechanical control system with
the input distribution Y generated by {Y1, . . . , Ym} and the corresponding G-
orthogonal distribution Y⊥ generated by {Y ⊥

m+1, . . . , Y
⊥
n }. We define the in-

trinsic vector-valued symmetric bilinear form to be B : Yq × Yq → d⊥
q

given in coordinates by

Bb
apw

awp =
1

2
〈〈〈Ya : Yp〉, Y ⊥

b 〉〉wawp,

where a, p ∈ {1, . . . ,m}, b ∈ {1, . . . , n−m}.

Remark 2. If Σ is underactuated by one control then b = 1 and B is a real-
valued symmetric bilinear form.

The intrinsic vector-valued symmetric bilinear form defined above is an
important measure of how the velocity components w parallel to the input
forces influence the velocity components s orthogonal to the input forces. The
remainder of the paper will detail the properties of B that form the foundation
for the stopping algorithm.
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3 Stopping Algorithm

The stopping algorithm consists of three simple stages. The first stage of
the algorithm is driving the w-velocities towards the appropriate eigenvector.
Recall that the symmetric form measures the influence the w-velocities have
on the s-velocity. If we wish to decrease the s-velocity then we drive the w-
velocities toward the eigenvector associated with the most negative eigenvalue
of the symmetric form. In contrast, if we desire to increase the s-velocity then
we drive the w-velocities toward the eigenvector associated with the most
positive eigenvalue of the symmetric form. For this paper, we assume that the
symmetric form is indefinite for almost all configurations. This guarantees the
existence of both positive and negative eigenvalues.

The second stage of the algorithm consists of driving w-velocities along the
appropriate eigenvector. The third stage of the algorithm consists of driving
the w-velocities to zero. This is achieved by choosing a control input directly
opposing the current w-velocities. The stopping algorithm cycles through each
stage until the magnitude of each velocity component drops below a specified
bound. The cycling can be observed in the simulation results for three different
mechanical systems underactuated by one control found in Section 4.

4 Examples

4.1 Planar Rigid Body

In this section we review the geometric model of the planar rigid body (Fig.
2).

The configuration manifold for the system is the Lie group SE(2) and the
potential function is assumed to be identically zero. Let us use coordinates
(x, y, θ) for the planar robot where (x, y) describes the position of the center
of mass and θ describes the orientation of the body frame {b1, b2} with respect
to the inertial frame {e1, e2}. In these coordinates, the Riemannian metric is
given by

G = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ,

where m is the mass of the body and J is the moment of inertia about the
center of mass. The inputs for this system consist of two independent forces
applied to an arbitrary point. We assume that the point of application of
the force is a distance h > 0 from the center of mass along the b1 body-axis.
Physically, the input force can be thought of as a variable-direction thruster on
the body which can be resolve into components along the b1 and b2 directions.
The control inputs are given by
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Fig. 2. A schematic of the planar rigid body.

F 1 = cos θdx + sin θdy,

F 2 = − sin θdx + cos θdy − hdθ.

Using Lemma 1, we determine that

ds

dt
=

√
2

2
w1(t)w2(t) − 1

2
s(t)w1(t).

It also follows from Definition 3 that the symmetric form is given by

B12 = B21 = −1

2
〈〈〈Y1 : Y2〉, Y ⊥〉〉 =

√
2

4

B11 = B22 = 0.

Figure 3 is a simulation of the stopping algorithm driving the planar rigid
body to rest given the initial velocities w1(0) = −10, w2(0) = 5 and s(0) =
−60.

4.2 Snakeboard

In this section we review the geometric model of the snakeboard (SB) (Fig.
4).

The configuration manifold for SB is SE(2)×S×S with local coordinates
(x, y, θ, ψ, φ). The Riemannian metric is given by

G = mdx⊗ dx+mdy ⊗ dy + l2mdθ ⊗ dθ

+Jrdψ ⊗ dθ + Jrdθ ⊗ dψ + Jrdψ ⊗ dψ + Jwdφ⊗ dφ,
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Fig. 3. A simulation of the stopping algorithm applied to the planar rigid body.
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Fig. 4. A schematic of the snakeboard.

where m > 0 is the total mass of SB, Jr > 0 is the moment of inertia of the
rotor mounted on top of the body’s center of mass, and Jw > 0 is the moment
of inertia of the wheel axles. The constraint one-forms are given by

0 = sin (φ− θ) dx+ cos (φ− θ) dy + l cos (φ) dθ,

0 = − sin (φ+ θ) dx+ cos (φ+ θ) dy − l cos (φ) dθ.

The two control forces are pure torques F 1 = dψ and F 2 = dφ.
Using Lemma 1, we determine that

ds

dt
= 2

{

− cos(φ)

√

1

10 cos(2φ) + 30

}

w1(t)w2(t)
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It also follows from Definition 3 that the symmetric form is given by

B12 = B21 = −1

2
〈〈〈Y1 : Y2〉, Y ⊥〉〉 = − cos(φ)

√

1

10 cos(2φ) + 30

B11 = B22 = 0

Figure 5 is a simulation of the stopping algorithm driving the snakeboard
to rest given the initial velocities w1(0) = 5, w2(0) = −3 and s(0) = 10.
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Fig. 5. A simulation of the stopping algorithm applied to the snakeboard.

4.3 Planar Rollerblader

The schematic model and description of the planar rollerblader (RB) can be
found in the introduction of this paper. The configuration manifold for RB
is SE(2) × S × R × S × R with local coordinates (x, y, θ, γ1, d1, γ2, d2). The
Riemannian metric is given by
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G =

(

m+
M

2

)

dx⊗ dx+
1

2
(d1m cos(γ1) − d2m cos(γ2))dx ⊗ dθ

+
1

2
d1m cos(γ1)dx⊗ dγ1 +

1

2
m sin(γ1)dx⊗ dd1

−1

2
d2m cos(γ2)dx⊗ dγ2 +

1

2
m sin(γ2)dx⊗ dd2

+

(

m+
M

2

)

dy ⊗ dy +
1

2
(d1m sin(γ1) − d2m sin(γ2))dy ⊗ dθ

+
1

2
d1m sin(γ1)dy ⊗ dγ1 −

1

2
m cos(γ1)dy ⊗ dd1

−1

2
d2m sin(γ2)dy ⊗ dγ2 +

1

2
m cos(γ2)dy ⊗ dd2

+
1

2
(d1m cos(γ1) − d2m cos(γ2))dθ ⊗ dx+

1

2
(d1m sin(γ1) − d2m sin(γ2))dθ ⊗ dy

+

(

mb2 + d1m cos(γ1)b+ d2m cos(γ2)b+
Ic

2
+ Ip +

d2
1m

2
+
d2
2m

2

)

dθ ⊗ dθ

+
1

2

(

md2
1 + bm cos(γ1)d1 + Ip

)

dθ ⊗ dγ1 +
1

2
bm sin(γ1)dθ ⊗ dd1

+
1

2

(

md2
2 + bm cos(γ2)d2 + Ip

)

dθ ⊗ dγ2 +
1

2
bm sin(γ2)dθ ⊗ dd2

+
1

2
d1m cos(γ1)dγ1 ⊗ dx+

1

2
d1m sin(γ1)dγ1 ⊗ dy

+
1

2

(

md2
1 + bm cos(γ1)d1 + Ip

)

dγ1 ⊗ dθ +

(

md2
1

2
+
Ip

2

)

dγ1 ⊗ dγ1

+
1

2
m sin(γ1)dd1 ⊗ dx− 1

2
m cos(γ1)dd1 ⊗ dy

+
1

2
bm sin(γ1)dd1 ⊗ dθ +

m

2
dd1 ⊗ dd1

−1

2
d2m cos(γ2)dγ2 ⊗ dx− 1

2
d2m sin(γ2)dγ2 ⊗ dy

+
1

2

(

md2
2 + bm cos(γ2)d2 + Ip

)

dγ2 ⊗ dθ +

(

md2
2

2
+
Ip

2

)

dγ2 ⊗ dγ2

+
1

2
m sin(γ2)dd2 ⊗ dx+

1

2
m cos(γ2)dd2 ⊗ dy

+
1

2
bm sin(γ2)dd2 ⊗ dθ +

m

2
dd2 ⊗ dd2.

Let the mass and rotational inertia of the central platform of the robot be M
and Ic respectively. Let each link have a rotational inertia Ip. The mass of the
link is assumed to be negligible. Each roller blade has mass m, but is assumed
to have no rotational inertia. The constraint one-forms are given by

0 = − sin(θ + γ1)dx + cos(θ + γ1)dy − b sin(γ1)dθ − dd1

0 = − sin(θ + γ2)dx + cos(θ + γ2)dy − b sin(γ2)dθ + dd2.
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The four control forces consist of two torques F 1 = dγ1 and F 2 = dγ2, as well
as, two linear actuators F 3 = dd1 and F 4 = dd2.

Here we only include the simulation results due to the complexity associ-
ated with the symbolic representation of the symmetric form. Figure 6 is a
simulation of the stopping algorithm driving the planar rollerblader to rest
given the initial velocities w1(0) = 1, w2(0) = −1, w3(0) = 2, w4(0) = −5
and s(0) = 10.
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Fig. 6. A simulation of the stopping algorithm applied to the planar rollerblader.

5 Conclusions

We seek to extend our results to mechanical systems underactuated by an
arbitrary number of controls. This will involve characterizing coordinate in-
variant properties of the intrinsic vector-valued symmetric bilinear form that
allow motion in the input foliation.
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