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_Abstract—A mobile manipulator is at the present time a  dynamic terms of the equations. In this work, that methogiplo
widespread term to refer to robot systems built from a robotic will be extended in studying a mobile manipulator in which

manipulator arm mounted on a mobile platform. A mobile o i include external force disturbances into the system
manipulation system offers a dual advantage of mobility oféred

by a mobile platform and dexterity offered by the manipulator. As mentioned, the modeling and design of nonlinear distur-
In this work, the tracking and nonlinear disturbance decouping ~ bance decoupling control for the wheeled mobile manipulato
problems are studied. We show that this system posses the is addressed. The final goal of the disturbance decoupling is
necessary geometric structure for complete disturbance @®u- 5 find a state feedback law such that the output is unaffected
pling between the outputs and disturbances. Simulation rasts by the disturbance. These disturbances can be externasforc

obtained for the mobile manipulator show good performance X )

nonlinear controller. bance decoupling have been studied on robotic manipulators
Index Terms—Mobile manipulator, nonlinear control, distur- and mobile platforms in [6], [7].
bance decoupling. In the following sections, we will present the dynamic
equations of the mobile manipulator which are coupled. A
|. INTRODUCTION state space representation of the equations will be pregent

In recent years, increasing attention has been paid to tnd nonlinear feedback controller will be designed, which in-
control problems of robotic manipulators with more “com- cludes disturbance decoupling. Computer simulations lvell
plete” models and more dynamic effects taken into accoundlisplayed, results shown include the position of the mobile
for better performance. Mobile manipulators built from amanipulator during motion to follow a task trajectory, hizeyl
robotic arm mounted on a wheeled mobile platform providegingles, joint-angles of the manipulator, etc. It will be who
better capabilities for numerous tasks. A mobile manipulat that the outputs are satisfactorily decoupled from theudist
combines the dextrous manipulation capability offered oy t Pances.
manipulator and the motility provided by the mobile platfor
The integration of a manipulator and a mobile platform gives Il. MODELING EQUATIONS
rise to many interesting issues. Investigations on thalvikty,
control design, simulation and experimentation for difer
situations has been studied by a number of researchers [1

The motion equation of theobotic manipulator subject to
yehicle motion [4], [5] can be extended to include external

3]. orce disturbances, and it is given by
_ tYamtz_;\molgo tand Yl:;: [4] stl_Jdielzolt the Gijﬁfr?t of tgﬁ dylr;?fmic Mo(q)Gr + Cr1(qry Gr) + Cra(qr, dry4y) = 7o
interaction between the manipulator and the mobile or . r

p p _RT(qT7 qv)QU + JTT(QT)Fe ) (1)

on the task performance, and showed that the system was

feedback linearizable under the appropriate nonlineangba whereq, = [0, 02]7 denotes the Lagrangian coordinates of
of coordinates. The manipulator tracks a desired trajgdtor the manipulatorg, denotes the Lagrangian coordinates of the
a fixed reference frame. Their objective was to compensate thmobile platform. M, is the inertia Matrix,C,, represents
dynamic interaction through a nonlinear feedback to improv the Coriolis and centrifugal terms;,» denotes the Coriolis
the performance of the overall system. The motion’s equaand centrifugal terms caused by the angular motion of the
tions of the mobile manipulator were obtained. A state spacelatform. 7, is the input torque/force for the manipulatdi,.
formulation was presented, motion equations and a constraiis the inertia matrix which represents the effect of the eighi
equation were considered. A nonlinear feedback contraler  dynamics on the manipulatoF,” is an end-effector external
designed to compensate for the dynamic interaction. A nasdul force disturbance vector on the manipulator ahd (¢,.) is
approach of his analysis was presented in [5] which includethe task space Jacobian matrix for the manipulator. Each ter
a detailed proof of the functional dependence of some of thenatrix/vector is presented in the Appendix.
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The motion equation of theobile platform with a mounted of each driving wheell,, is the moment of inertia of
manipulator [4], [5] including external force disturbascis each wheel and the motor about the wheel diameter.
given by

le(Qv)dv + C’Ul(Qvaq.v) + C’UQ(QMQMQ'LNQU) -
E’UT’U - AT)\ - ]\/[UQ(qT7 qv)(jv - R’U(QT7 %)dr
+Eo o (g0) Fe”, (2

where M,; and C,; are the mass inertia and the velocity
dependent terms of the platform, respectivély,», and C,»
represent the inertial term and Coriolis and centrifugainte
due to the presence of the manipulatey. is the input
torque/force to the vehicldz, is a constant matrix) denotes
the vector Lagrange multipliers corresponding to the kiatan
constraints, andz,, represents the inertia matrix which reflects
the dynamic effect of the arm motion on the vehicl¢?’ is
an external force disturbance vector on the mobile platform
through its center and,,” (¢,) is the moving space Jacobian Fig. 1. Geometry of the mobile platform and the mounted 2R imdator.
matrix for the mobile platform. Each term matrix/vector is
presented in the Appendix.

Combining the velocity and inertia terms in Eq. 1 and Eq.
2, respectively, the motion equations of the wheeled mobile The mobile platform is adopted to have two co-axial wheels

manipulator are simplified to driven by motors. It is assumed that the manipulator itslf i
. o nonredundant, that is, the degree of freedom of the manoula
M:(ar)Gr + Cr(@r, Gry o) = 77 (3)  is less than or equal to six. The constraint equations to
— R (qr, qv) o, which the platform is subjected are given in matrix form as
My(¢r,0)do + Co(@ry Qs drydv) =  EuTy A(gv)do = 0, whereg, = [zo, yo, 0, 6,]" andA(g,) is given
~Ry(ar.00)ir — ATA+ T, (q,)F." by
+EUJUT(qv)Fev’ Alg) = —sing cos¢p 0 O @)

—cos¢p —sing cb cb|’
whereC, = Cy1 + Cya, C,, = Cy1 + Cyo and M,, = M, +
Mys.

A. Congtraint Equations of the Mobile Platform ) ) .
. . . . L B. State Space Formulation of Motion Equations
The following notations will be used in the derivation of

the constraint and dynamic equations, they are illustrated
Fig. 1.

- For the mobile platform,(zg,yo) are the coordinates
of the point P, which is the intersection of the axis of
symmetry with the driving wheel axis in the inertial
frame. b is the distance between the driving wheels
and the axis of symmetryr is the radius of each
driving wheel.f,. and 6, are the angular positions of the
right and left driving wheel, respectively. In addition, G = S(q)n(t), (5)
¢ = r(0. —0,)/2b = ¢(0, — 0;) is the heading angle
of the mobile robot measured frofiX-axis. d is the
distance fromP, to the center of mass of the platform.

The dynamics of the wheeled mobile manipulator are
governed by motion Egs. 3 and(q,)¢, = 0, we proceed
to represent them in the state space. Since the platform
velocity is always in the null space ol(q,) [4] according
to A(qy)g, = 0, it is possible to define a vector of generalized
coordinates)(t) such that

where S(g,) is a4 x 2 full rank matrix, whose columns are
in the null space ofA(q,). S(qy) is as follows [4]

m. IS the mass of the platform without the driving chbcos¢ cbeosd
wheels. I. is the moment of inertia of the platform cbsing chsing
without the driving wheels about a vertical axis through S(g) = 1 0
P. 0 1
- For the manipulator, wherd?, = (Yx;,"y,) are the First, we differentiate Eq. 5, and we substitute the resgilti

coordinates of the base of the manipulator in the framexpression forg, into the first equation in Egs. 3 which is
¥,. 6, and@, are the joint angles of the manipulatéy;  multiplied by S™, later, we proceed similarly using into the
andl, are the arm lengths, respectively., is the mass second equation in Egs. 3.
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As a result, the system of equations is given by The output variables for controlling the mobile platform
T T . are chosen next. The objective of the platform movement is
STM,S S'R,||n . . . . )
RS M i = to bring the manipulator into a preferred configuration. For
" " " this purpose, we pick the configuration with the maximum

. P manipulability measure as the preferred configuration ef th
-STM,Sn - STc, n STE, 0] [, manipulator. The endpoint of the manipulator at the prefirr
—C, — R,Sn 0 I |7 configuration is denoted b#,., called the reference point. The
; 5 coordinates off,. in X, are given by
N STE,J,T 0 ][R op - [”z] _ [\/112 + 1% 4 x} _ M .
0 ST FT " “Yr R ly
D We look to control the mobile platform in such a way that

P, is brought toP., so the manipulator is brought into the
preferred configuration. Thus, we select the coordinateB. of
in the inertial framex,,, i.e.

Using the state vectar = [¢7 ¢7 5" ¢,7]", the system can be
rewritten as

Sn 0 0 w ) .
j:, — qr + O T4+ O w, (6) wPr _ |:wx'r‘:| _ |:IO:| + |:C95 d) — S1n ¢:| |:ZI:| )
Pflg Ple P-1p Yr Yo sing cos¢ ly
W W W to be the other two components of the output equation. The

output equations for controlling the mobile manipulatoe ar
wherer = [, 7.]T andw = [F."” F."]". given by

The state space form of the system is wa, (20, Yo, O, 1)
T ) 3 T

i = F(z)+ G2)T + plz)w 7) _ | "yr(z0,y0, 05, 61) 8
vo= Yxe(01,02) ' ®
I1l. FEEDBACK CONTROL AND DISTURBANCE e (61,02)
DECOUPLING :
h(x)

We have followed the work of Yamamoto and Yun [4] in

the derivation of the output equations, section A. Sectios B B. Feedback Input-Output Linearization with Disturbance De-
the new work made for the disturbance decoupling pmblem'coupling

A. Output Equations

A control system is fully described by the state equation
and the output equation. The state equation of the mobile We have presented the dynamics of the mobile manipulator
manipulator was obtained in the previous section. The dutpun the state space form and the output equation
variables are the ones whose values are to be regulated by the
design of a nonlinear feedback controller. F(z) + G(z)7 + p()w, (©)

The desired task trajectory for the endpoint of the manipu- y = h(). (10)
lator P, in the frameX,, is given by

T

Note that the vector fielg(x) models the disturbances. It has
wp ) — Yo (t) been shown that this system is nonholonomic [4] and it is
o(t) = AGIE not input-output linearizable as it is. Thus, to achieveuirp
The mobile manipulator shown in Fig. 1 has four inputs, two_?_gtziu;] Illr;f(i/a;;?goEn a;c\),\llﬂélr;earlil;ede?r?:;zlg”g\a;\vsinto ft;eegt:ggllfye
from the 2R manipulator and two from the mobile platform. P a PP g '

We may have up to four output variables to be controlledtFirs T = QY Pu-—Y¢). (12)
we select the output variables of the manipulai®rrepresents

the actual location of the end point of the manipulator. TheWhICh simplifies the state equation as

coordinates of°, with respect to the platform coordinate frame Sn 0 0
3, are given by & = Gr | + [0f u—+ 0 w, (12)
-1
op — [Zme] _ {ll cos 01 + o Cf)S(el + 69) —l—: xb] ' H(i—/ \I/ iﬁ/
Ye Iy sin 6y + losin(01 + 62) + yp F(z) g p(z)

Points” P, and® P, are related by y = h(z).
If the disturbancev is available for measurements one can use
xo] [cos ¢ —sin ﬂ [vxe} a controlu = a(x) + 8(x)v +v(x)w [8]. Then decoupling the

Pe = "R+ Ry'Fe= [yo sing  coso | |"ye output from the disturbance it is possible.
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The relative degree of the systems= 2, that is the
number of differentiations of each component of the outputs
until the input explicitly appears in the derivatiyie Following
the analysis of [8], the control law solving the problem of
decouplingy from w is given by

_ LiPh(x) @[y
ol = T T @ [q]

B 1
T L e

_ LpLgh(z)
y(x) = _Lgth(:v)__P D.

The nonlinear feedback is given by

u = o°* (v ) [’7] - @PlDw) . (13)

The matrix ® is presented in the Appendix. Applying this
nonlinear feedback Eq. 13 into Eq. 12, we obtain a linear and
decoupled input-output relationship

1 v
2 Vo

= .. = = 14

i iis Vs (14)
4 V4

The input-output relationship is decoupled because each co
ponent of the reference input;, controls one and only one
component of the outpuf;. To complete the controller design,

it is necessary to stabilize each of the above four subsystem
with another constant feedback. Therefore, the entirercthet

for the mobile manipulator consists of nonlinear feedbacks
Eqg. 11 and Eq. 13, followed by a linear feedback. We have
used a PD computed-torque control law. We look for a desired
trajectory y4, which givesj = ijq — K,é — Kpe with the
tracking error defined as=y — yq.

IV. SIMULATIONS

Computer simulations are conducted to evaluate the effec-
tiveness of the controller. In the simulation, a task tregec
will be examined. The mobile platform is initially placedthe
origin facing toward the positivél -axis of the inertial frame.
The initial head angle is zerg(0) = 0. The initial values{ =
0) of the variables ardxq, yo, 0y, 0;,01,02,0,,0;,61,05) =

Fig. 2.

TABLE |
PARAMETERS VALUES USED FOR THE SIMULATIONS

Parameterér Values‘ Units

r 0.075 m

b 0.171 m

Il 0.4 m

Iy 0.4 m
mq 4 kg
ma 4 kg
me 94 kg
My 5 kg
1. 6.609 | kg-m?
I, 0.135 | kg-m?
L, 0.010 | kg - m?
d 0 m

We have investigated the following situation:

o Simulation | In this simulation, we have investigated the

effect of a force disturbance at some intervak ¢ < 2.

The motion of the mobile manipulator is shown in Fig. 2.
The cart geometry and its center)(are shown in Fig. 2,
the solid line represents the trajectory of the end-point of
the manipulator and a dashed line is used for the desired
task trajectory.

. . . . .
0.5 1 15 2 25 3
WX [m]

Simulation I. Motion of the mobile platform during améar task

(0,—0.15,0,0,45,—15,0,0,0,0). Platform and manipulator trajectory. Dashed line, linear task trajectory; Solidelirend-point of the
parameter values are given in Table I, we have used the valug®gnipulator;+, Po; dashed square; mobile platform position.

used in [4]. The entire system is assumed to be stationary at
t=0.
We have selected a linear task trajectory

The variations of the joint angles of the manipulator during

time are shown in Fig. 3. These angles have no significant

T I b T

wye(t) wye(o) +3
where (“z.(0)," y.(0)) = (0.6,0) are the coordinates of

changes during the simulation. The joint angles rate of ghan
in time is shown Fig. 4.

The variation of the platform wheel angles during the

the manipulator end point in the inertial frame at the ititia simulation is shown in Fig. 5. There are slight changes at the

configuration.z; = 0.01m andy, = —0.01m.

initial stage, but later the angles are parallel to eachrpthe

The external force disturbance has been implemented ashich is reflected in the alignment of the axis of symmetry to

F."(t) = [100 100]T and F,."(¢) = [100 100]% for t; < t <

the desired task trajectory. The platform wheel angle® ot

ts. change is shown in Fig. 6.
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453 ———— 14 in the tracking error, but later are reduced asymptotictdly
low values as expected.

41-14.2

0.5
1-144

04 r T

01 [deg]
07 [deg]

{-14.6
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e, N

{-14.8 0.2

3
~ 0.1 b
44.8 L L L L L L L L -15
0 0.5 1 1.5 2 25 3 35 4 45 =
t[sec] 0 \
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e, e,e; e, [m]

Fig. 3. Joint angles of the manipulator in time for Simulatio

-0.2

0 2 4 6 8 10

15 t [sec]

o
-~

Fig. 7. Tracking errors for Simulation I.

' 8, ] The force disturbances are decoupled from the outputs.
' T Consequently, the outputs do not change with the distur-
bances. The effect of force disturbance can be observed in
the computed torques during the linear control. The contpute
torques for the simulation are shown in Fig. 8 and 9. We have
% os 1 s 2 25 3 35 4 compared the situation with disturbande ((¢) = [100 100]

tlsec] and F," (t) = [100 100]7) and without the disturbance.

(3)2 [deg/sec]
wv
==

o

6,

|
4]
-

Fig. 4. Rate of change of the joint angles in time for Simolatl. 1000

USNST tmeperod
500 )

[N'm]

2

vr Vv,
Tt

-500

Vi,

-1o009 undisturbed |
——— disturbed

15004 05 1 1.5 2 25 3 35 4
t[sec]

Fig. 8. Computed platform torques for Simulation |I.

t [sec]

Fig. 5.  Wheel angles of the mobile platform in time for Sintida I.

T
. =z
o, 200
10 M }ﬁ
o . —400 —
% 5 6 | gmepered . undisturbed
i ~600 disturbed
-3 L . L - . ! :
N 0 0.5 1 1.5 2 25 3 35 4
.o 0
t [sec]
-5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ] Fig. 9. Computed manipulator torques for Simulation I.
0 0.5 1 1.5 2 25 3 35 4
t [sec] . . . .
The disturbances are satisfactorily managed by the linear
Fig. 6. Rate of change of the wheel angles in time for Simutati control applied to the linear input-output relationship.

The tracking errors are shown in Fig. 7. We have estimated V. CONCLUSIONS

the tracking error as the difference of the obtained trajgct We have presented the motion control of a mobile ma-
to the desired trajectory as (t) = yi(t) — ya;(t), for ¢ =  nipulator with disturbance decoupling of an external force
1,...,4. During the simulation, initially there are oscillations  First, we established a dynamic model which takes into
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account the dynamic interaction between the mobile platfor

and the mobile manipulator. We set up a nonlinear feedback

controller law with disturbance decoupling and a lineartomn
This controller allows to the mobile platform to follow a de-
sired trajectory even with disturbances. Finally, we carteld
computer simulations, and the behavior of the variableef t
problem was discussed.
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APPENDIX

The following equations present the detailed expressions f
all of the terms contained in the equations of motion for the
system in this paper.

av =["q1 Yq2 Vg3 “qa]T = [zo yo Or 0]
gr = ["q1 "g2]" = [01 6]
Lmali? + 2male? 4 mala? cos 02

— |3
M |: %mzlz +%m2l22cos€2

%m2122 + m2l22 cos 02
%lgzmz ’

Cpy = —%m212293 sin 09 - mgngé%ég sin 09
" %m2l229% sin 0o ’
m n n
. oTy, a2T1,T
Cra@ =233 > heo—— | V4 Tk
J=1 k=1 h=maz(i,k) 9qi  97q;0"q
m n n
ar, . 9*1,T s
+ t e | V45 Vdk,
n T
- T, T}
RT-(”):ZtT’ k & k , 1<i<n, 1<j<m,
= 9@ 9V
Ty =TyA1°At .. A i=1,...n,
[ cosf1 —sinfy 0 Iy cosby
sin 01 cos 01 0 Ii sin6q
AIO = )
0 0 1 0
L 0 0 0 1 ]
cosfa —sinfz 0 Il cosfy ]
sin 6o cos 02 0 2 sinfq
A21 = 5
0 0 1 0
L O 0 0 1 ]
cos ¢ sing 0 xo
—sin¢g cos¢ 0 o
Tu = ;
0 0 1 0
L 0 0 0 1
%m1 12 0 0 —%ml 151
0 0 0 0
Jl - I
0 0 0 0
L —%ml L 0 O m1
I = _—ll sinf; — l2 sin(€1 + 92) —ls sin(€1 + 92)
r | licosO1 +12 cos(01 + 62) lacos(01 + 602) |’

%m2l22 0 O —%mzlz
0 0 0 0
J2 = )
0 0 0 0
—5m2 lo 0 O mo
m 0 —meedsing  meedsin ¢
Mor — 0 m meedcos¢  meedcos ¢
L= | —meedsing  meedcos ¢ Ic?2 + 1, —Ic? )
meedsin ¢ —mecd cos ¢ —Ic? Ic? + I,
—mcdd)2 cos ¢
—medd? sin ¢
0
0
0 O
0 0
Ev=11 o|>
0 1
n
; T, Ty,
MUQ(”) Z tr —k k k ) = i7 J < m,
k=1 9"q 9"q
n m n
Ty a2T,T
Cp2® =2 t { = Jp "qj - Yk
= ,;1 ,;J vq; 97 q;0vqy
n n n
Ty, 8?1, T :
+ Z Z Z t " h - N " .] q}cv
J=1k=1 h=maz(j,k) 0vq; ~ 9"q;0"qn
n T
) o1y . 0T,
R,V =3 tr | SRRl 1<i<m, 1< <n,
; 0Yq; 0" q;
k=j
D11 D1 0 0
o — Dy1 Do 0 0
- 0 0 @3,3 <I>3,4 ’
0 0 Dy3 Py
®y,1 = (cb — lyc) cos p — Iz sin ¢,
D12 = (cb+ lyc) cos ¢ + Iz sin @,
Do 1 = (¢b — lyc)sing + Iz cos @,
Do 2 = (cb+ lyc)sing — Iz cos @,
P33 = —l1sinf1 — lo Sin(@l —+ 92),
D34 = —l2sin(01 + 02),
<I>4,3 =1y cosby + 12 COS(91 + 92),
<I>4,4 =l COS(91 + 92).
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