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Abstract—A mobile manipulator is at the present time a
widespread term to refer to robot systems built from a robotic
manipulator arm mounted on a mobile platform. A mobile
manipulation system offers a dual advantage of mobility offered
by a mobile platform and dexterity offered by the manipulator.
In this work, the tracking and nonlinear disturbance decoupling
problems are studied. We show that this system posses the
necessary geometric structure for complete disturbance decou-
pling between the outputs and disturbances. Simulation results
obtained for the mobile manipulator show good performance
in the presence of significant disturbances using the designed
nonlinear controller.

Index Terms—Mobile manipulator, nonlinear control, distur-
bance decoupling.

I. I NTRODUCTION

In recent years, increasing attention has been paid to the
control problems of robotic manipulators with more “com-
plete” models and more dynamic effects taken into account
for better performance. Mobile manipulators built from a
robotic arm mounted on a wheeled mobile platform provides
better capabilities for numerous tasks. A mobile manipulator
combines the dextrous manipulation capability offered by the
manipulator and the motility provided by the mobile platform.
The integration of a manipulator and a mobile platform gives
rise to many interesting issues. Investigations on their stability,
control design, simulation and experimentation for different
situations has been studied by a number of researchers [1]–
[3].

Yamamoto and Yun [4] studied the effect of the dynamic
interaction between the manipulator and the mobile platform
on the task performance, and showed that the system was
feedback linearizable under the appropriate nonlinear change
of coordinates. The manipulator tracks a desired trajectory in
a fixed reference frame. Their objective was to compensate the
dynamic interaction through a nonlinear feedback to improve
the performance of the overall system. The motion’s equa-
tions of the mobile manipulator were obtained. A state space
formulation was presented, motion equations and a constraint
equation were considered. A nonlinear feedback controllerwas
designed to compensate for the dynamic interaction. A modular
approach of his analysis was presented in [5] which includes
a detailed proof of the functional dependence of some of the

dynamic terms of the equations. In this work, that methodology
will be extended in studying a mobile manipulator in which
we will include external force disturbances into the system.

As mentioned, the modeling and design of nonlinear distur-
bance decoupling control for the wheeled mobile manipulator
is addressed. The final goal of the disturbance decoupling is
to find a state feedback law such that the output is unaffected
by the disturbance. These disturbances can be external forces
on the system as environmental loads. Related work on distur-
bance decoupling have been studied on robotic manipulators
and mobile platforms in [6], [7].

In the following sections, we will present the dynamic
equations of the mobile manipulator which are coupled. A
state space representation of the equations will be presented.
A nonlinear feedback controller will be designed, which in-
cludes disturbance decoupling. Computer simulations willbe
displayed, results shown include the position of the mobile
manipulator during motion to follow a task trajectory, heading
angles, joint-angles of the manipulator, etc. It will be shown
that the outputs are satisfactorily decoupled from the distur-
bances.

II. M ODELING EQUATIONS

The motion equation of therobotic manipulator subject to
vehicle motion [4], [5] can be extended to include external
force disturbances, and it is given by

Mr(qr)q̈r + Cr1(qr, q̇r) + Cr2(qr, q̇r, q̇v) = τr

−Rr(qr, qv)q̈v + Jr
T (qr)Fe

r, (1)

where qr = [θ1, θ2]
T denotes the Lagrangian coordinates of

the manipulator,qv denotes the Lagrangian coordinates of the
mobile platform. Mr is the inertia Matrix,Cr1 represents
the Coriolis and centrifugal terms,Cr2 denotes the Coriolis
and centrifugal terms caused by the angular motion of the
platform. τr is the input torque/force for the manipulator.Rr

is the inertia matrix which represents the effect of the vehicle
dynamics on the manipulator.Fe

r is an end-effector external
force disturbance vector on the manipulator andJr

T (qr) is
the task space Jacobian matrix for the manipulator. Each term
matrix/vector is presented in the Appendix.
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The motion equation of themobile platform with a mounted
manipulator [4], [5] including external force disturbances is
given by

Mv1(qv)q̈v + Cv1(qv, q̇v) + Cv2(qr, q̇r, qv, q̇v) =

Evτv − AT λ − Mv2(qr, qv)q̈v − Rv(qr, qv)q̈r

+EvJv
T (qv)Fe

v, (2)

where Mv1 and Cv1 are the mass inertia and the velocity
dependent terms of the platform, respectively.Mv2 and Cv2

represent the inertial term and Coriolis and centrifugal terms
due to the presence of the manipulator.τv is the input
torque/force to the vehicle.Ev is a constant matrix,λ denotes
the vector Lagrange multipliers corresponding to the kinematic
constraints, andRv represents the inertia matrix which reflects
the dynamic effect of the arm motion on the vehicle.Fe

v is
an external force disturbance vector on the mobile platform
through its center andJv

T (qv) is the moving space Jacobian
matrix for the mobile platform. Each term matrix/vector is
presented in the Appendix.

Combining the velocity and inertia terms in Eq. 1 and Eq.
2, respectively, the motion equations of the wheeled mobile
manipulator are simplified to

Mr(qr)q̈r + Cr(qr, q̇r, q̇v) = τr (3)

−Rr(qr, qv)q̈v,

Mv(qr, qv)q̈v + Cv(qr, qv, q̇r, q̇v) = Evτv

−Rv(qr, qv)q̈r − AT λ + Jr
T (qr)Fe

r

+EvJv
T (qv)Fe

v,

whereCr = Cr1 + Cr2, Cv = Cv1 + Cv2 andMv = Mv1 +
Mv2.

A. Constraint Equations of the Mobile Platform

The following notations will be used in the derivation of
the constraint and dynamic equations, they are illustratedin
Fig. 1.

- For the mobile platform,(x0, y0) are the coordinates
of the pointP0 which is the intersection of the axis of
symmetry with the driving wheel axis in the inertial
frame. b is the distance between the driving wheels
and the axis of symmetry.r is the radius of each
driving wheel.θr andθl are the angular positions of the
right and left driving wheel, respectively. In addition,
φ = r(θr − θl)/2b = c(θr − θl) is the heading angle
of the mobile robot measured fromwX-axis. d is the
distance fromP0 to the center of mass of the platform.
mc is the mass of the platform without the driving
wheels. Ic is the moment of inertia of the platform
without the driving wheels about a vertical axis through
P0.

- For the manipulator, wherePb = (vxb,
v yb) are the

coordinates of the base of the manipulator in the frame
Σv. θ1 andθ2 are the joint angles of the manipulator;l1
and l2 are the arm lengths, respectively.mw is the mass

of each driving wheel.Im is the moment of inertia of
each wheel and the motor about the wheel diameter.
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Fig. 1. Geometry of the mobile platform and the mounted 2R manipulator.

The mobile platform is adopted to have two co-axial wheels
driven by motors. It is assumed that the manipulator itself is
nonredundant, that is, the degree of freedom of the manipulator
is less than or equal to six. The constraint equations to
which the platform is subjected are given in matrix form as
A(qv)q̇v = 0, whereqv = [x0, y0, θr, θl]

T andA(qv) is given
by

A(qv) =

[
− sinφ cosφ 0 0
− cosφ − sinφ cb cb

]

. (4)

B. State Space Formulation of Motion Equations

The dynamics of the wheeled mobile manipulator are
governed by motion Eqs. 3 andA(qv)q̇v = 0, we proceed
to represent them in the state space. Since the platform
velocity is always in the null space ofA(qv) [4] according
to A(qv)q̇v = 0, it is possible to define a vector of generalized
coordinatesη(t) such that

q̇v = S(qv)η(t), (5)

whereS(qv) is a 4 × 2 full rank matrix, whose columns are
in the null space ofA(qv). S(qv) is as follows [4]

S(qv) =







cb cosφ cb cosφ
cb sinφ cb sinφ

1 0
0 1







.

First, we differentiate Eq. 5, and we substitute the resulting
expression forq̈v into the first equation in Eqs. 3 which is
multiplied byST , later, we proceed similarly using̈qv into the
second equation in Eqs. 3.
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As a result, the system of equations is given by
[
ST MvS ST Rv

RrS Mr

]

︸ ︷︷ ︸

P

[
η̇
q̈r

]

=

[
−ST MvṠη − ST Cv

−Cr − RrṠη

]

︸ ︷︷ ︸

ξ

+

[
ST Ev 0

0 I

]

︸ ︷︷ ︸

Q

[
τv

τr

]

+

[
ST EvJv

T 0

0 Jr
T

]

︸ ︷︷ ︸

D

[
Fe

v

Fe
r

]

.

Using the state vectorx = [qT
v qT

r ηT q̇r
T ]T , the system can be

rewritten as

ẋ =





Sη
q̇r

P−1ξ





︸ ︷︷ ︸

F (x)

+





0
0

P−1Q





︸ ︷︷ ︸

G(x)

τ +





0
0

P−1D





︸ ︷︷ ︸

p(x)

ω, (6)

whereτ = [τv τr]
T andω = [Fe

v Fe
r]T .

The state space form of the system is

ẋ = F (x) + G(x)τ + p(x)ω (7)

III. F EEDBACK CONTROL AND DISTURBANCE

DECOUPLING

We have followed the work of Yamamoto and Yun [4] in
the derivation of the output equations, section A. Section Bis
the new work made for the disturbance decoupling problem.

A. Output Equations

A control system is fully described by the state equation
and the output equation. The state equation of the mobile
manipulator was obtained in the previous section. The output
variables are the ones whose values are to be regulated by the
design of a nonlinear feedback controller.

The desired task trajectory for the endpoint of the manipu-
lator Pe in the frameΣw is given by

wPe(t) =

[
wxe(t)
wye(t)

]

.

The mobile manipulator shown in Fig. 1 has four inputs, two
from the 2R manipulator and two from the mobile platform.
We may have up to four output variables to be controlled. First,
we select the output variables of the manipulator.Pe represents
the actual location of the end point of the manipulator. The
coordinates ofPe with respect to the platform coordinate frame
Σv are given by

vPe =

[
vxe
vye

]

=

[
l1 cos θ1 + l2 cos(θ1 + θ2) +v xb

l1 sin θ1 + l2 sin(θ1 + θ2) +v yb

]

.

PointsvPe andwPe are related by

wPe = wP0 + Rφ
vPe =

[
x0

y0

]

+

[
cosφ − sinφ
sin φ cosφ

] [
vxe
vye

]

.

The output variables for controlling the mobile platform
are chosen next. The objective of the platform movement is
to bring the manipulator into a preferred configuration. For
this purpose, we pick the configuration with the maximum
manipulability measure as the preferred configuration of the
manipulator. The endpoint of the manipulator at the preferred
configuration is denoted byPr, called the reference point. The
coordinates ofPr in Σv are given by

vPr =

[
vxr
vyr

]

=

[√

l1
2 + l2

2 +v xv
vyb

]

=

[
lx
ly

]

.

We look to control the mobile platform in such a way that
Pr is brought toPe, so the manipulator is brought into the
preferred configuration. Thus, we select the coordinates ofPr

in the inertial frameΣw, i.e.

wPr =

[
wxr
wyr

]

=

[
x0

y0

]

+

[
cosφ − sinφ
sin φ cosφ

] [
lx
ly

]

.

to be the other two components of the output equation. The
output equations for controlling the mobile manipulator are
given by

y =







wxr(x0, y0, θr, θl)
wyr(x0, y0, θr, θl)

vxe(θ1, θ2)
vye(θ1, θ2)







︸ ︷︷ ︸

h(x)

. (8)

B. Feedback Input-Output Linearization with Disturbance De-
coupling

We have presented the dynamics of the mobile manipulator
in the state space form and the output equation

ẋ = F (x) + G(x)τ + p(x)ω, (9)

y = h(x). (10)

Note that the vector fieldp(x) models the disturbances. It has
been shown that this system is nonholonomic [4] and it is
not input-output linearizable as it is. Thus, to achieve input-
output linearization a nonlinear feedback has to be employed.
To simplify state Eq. 9 we applied the following feedback,

τ = Q−1(P u − ξ). (11)

which simplifies the state equation as

ẋ =





Sη
q̇r

0





︸ ︷︷ ︸

f(x)

+





0
0
I





︸︷︷︸

g

u +





0
0

P−1D





︸ ︷︷ ︸

p(x)

ω, (12)

y = h(x).

If the disturbanceω is available for measurements one can use
a controlu = α(x)+β(x)v +γ(x)ω [8]. Then decoupling the
output from the disturbance it is possible.
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The relative degree of the system isr = 2, that is the
number of differentiations of each component of the outputs
until the input explicitly appears in the derivativëy. Following
the analysis of [8], the control law solving the problem of
decouplingy from ω is given by

α(x) = −

Lf
2h(x)

LgLfh(x)
= −

Φ̇

Φ

[
η
q̇r

]

,

β(x) =
1

LgLfh(x)
=

1

Φ
,

γ(x) = −

LpLfh(x)

LgLfh(x)
= −P−1D.

The nonlinear feedback is given by

u = Φ−1

(

v − Φ̇

[
η
q̇r

]

− ΦP−1Dω

)

. (13)

The matrix Φ is presented in the Appendix. Applying this
nonlinear feedback Eq. 13 into Eq. 12, we obtain a linear and
decoupled input-output relationship

ÿ =







ÿ1

ÿ2

ÿ3

ÿ4







=







v1

v2

v3

v4







= v. (14)

The input-output relationship is decoupled because each com-
ponent of the reference input,vi, controls one and only one
component of the outputyi. To complete the controller design,
it is necessary to stabilize each of the above four subsystem
with another constant feedback. Therefore, the entire controller
for the mobile manipulator consists of nonlinear feedbacks
Eq. 11 and Eq. 13, followed by a linear feedback. We have
used a PD computed-torque control law. We look for a desired
trajectory yd, which gives ÿ = ÿd − Kv ė − Kpe with the
tracking error defined ase = y − yd.

IV. SIMULATIONS

Computer simulations are conducted to evaluate the effec-
tiveness of the controller. In the simulation, a task trajectory
will be examined. The mobile platform is initially placed atthe
origin facing toward the positiveX-axis of the inertial frame.
The initial head angle is zero,φ(0) = 0. The initial values (t =
0) of the variables are(x0, y0, θr, θl, θ1, θ2, θ̇r, θ̇l, θ̇1, θ̇2) =
(0,−0.15, 0, 0, 45,−15, 0, 0, 0, 0). Platform and manipulator
parameter values are given in Table I, we have used the values
used in [4]. The entire system is assumed to be stationary at
t = 0.

We have selected a linear task trajectory

wPe(t) =

[
wxe(t)
wye(t)

]

=

[
wxe(0) + t

2
wye(0) + t

2

]

, (15)

where (wxe(0),w ye(0)) = (0.6, 0) are the coordinates of
the manipulator end point in the inertial frame at the initial
configuration.vxb = 0.01m andvyb = −0.01m.

The external force disturbance has been implemented as
Fe

v(t) = [100 100]T and Fe
r(t) = [100 100]T for t1 < t <

t2.

TABLE I
PARAMETERS VALUES USED FOR THE SIMULATIONS

Parameters Values Units

r 0.075 m
b 0.171 m
l1 0.4 m
l2 0.4 m
m1 4 kg
m2 4 kg
mc 94 kg
mw 5 kg
Ic 6.609 kg · m2

Im 0.135 kg · m2

Iw 0.010 kg · m2

d 0 m

We have investigated the following situation:

• Simulation I. In this simulation, we have investigated the
effect of a force disturbance at some interval1 < t < 2.
The motion of the mobile manipulator is shown in Fig. 2.
The cart geometry and its center (+) are shown in Fig. 2,
the solid line represents the trajectory of the end-point of
the manipulator and a dashed line is used for the desired
task trajectory.
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1

1.5
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2.5

wX [m]

w
Y

 [
m

]

Fig. 2. Simulation I. Motion of the mobile platform during a linear task
trajectory. Dashed line, linear task trajectory; Solid line, end-point of the
manipulator;+, P0; dashed square; mobile platform position.

The variations of the joint angles of the manipulator during
time are shown in Fig. 3. These angles have no significant
changes during the simulation. The joint angles rate of change
in time is shown Fig. 4.

The variation of the platform wheel angles during the
simulation is shown in Fig. 5. There are slight changes at the
initial stage, but later the angles are parallel to each other,
which is reflected in the alignment of the axis of symmetry to
the desired task trajectory. The platform wheel angles’ rate of
change is shown in Fig. 6.
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Fig. 3. Joint angles of the manipulator in time for Simulation I.
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Fig. 4. Rate of change of the joint angles in time for Simulation I.
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Fig. 5. Wheel angles of the mobile platform in time for Simulation I.
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Fig. 6. Rate of change of the wheel angles in time for Simulation I.

The tracking errors are shown in Fig. 7. We have estimated
the tracking error as the difference of the obtained trajectory
to the desired trajectory asei(t) = yi(t) − ydi(t), for i =
1, . . . , 4. During the simulation, initially there are oscillations

in the tracking error, but later are reduced asymptoticallyto
low values as expected.
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Fig. 7. Tracking errors for Simulation I.

The force disturbances are decoupled from the outputs.
Consequently, the outputs do not change with the distur-
bances. The effect of force disturbance can be observed in
the computed torques during the linear control. The computed
torques for the simulation are shown in Fig. 8 and 9. We have
compared the situation with disturbance (Fe

v(t) = [100 100]T

andFe
r(t) = [100 100]T ) and without the disturbance.
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Fig. 8. Computed platform torques for Simulation I.
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Fig. 9. Computed manipulator torques for Simulation I.

The disturbances are satisfactorily managed by the linear
control applied to the linear input-output relationship.

V. CONCLUSIONS

We have presented the motion control of a mobile ma-
nipulator with disturbance decoupling of an external force.

First, we established a dynamic model which takes into
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account the dynamic interaction between the mobile platform
and the mobile manipulator. We set up a nonlinear feedback
controller law with disturbance decoupling and a linear control.
This controller allows to the mobile platform to follow a de-
sired trajectory even with disturbances. Finally, we conducted
computer simulations, and the behavior of the variables of the
problem was discussed.
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APPENDIX

The following equations present the detailed expressions for
all of the terms contained in the equations of motion for the
system in this paper.

qv = [vq1
vq2

vq3
vq4]

T = [x0 y0 θr θl]
T

qr = [rq1
rq2]

T = [θ1 θ2]
T

Mr =

[ 1
3
m1l1

2 + 4
3
m2l2

2 + m2l2
2 cos θ2

1
3
m2l2

2 + m2l2
2 cos θ2

1
3
m2l2

2 + 1
2
m2l2

2 cos θ2
1
3
l2

2m2

]

,

Cr1 =

[
− 1

2
m2l2

2θ̇2
2 sin θ2 − m2l2

2θ̇2
1 θ̇2

2 sin θ2
1
2
m2l2

2θ̇2
1 sin θ2

]

,

Cr2
(i) = 2

m∑

j=1

n∑

k=1

n∑

h=max(i,k)

tr

[

∂Th

∂rqi

Jh

∂2Th
T

∂vqj∂rqk

]

v q̇j ·
r q̇k

+
m∑

j=1

n∑

k=1

n∑

h=i

tr

[

∂Th

∂rqi

Jh

∂2Th
T

∂vqj∂vqk

]

v q̇j · v q̇k,

Rr
(ij) =

n∑

k=i

tr

[

∂Tk

∂rqi

Jk

∂Tk
T

∂vqj

]

, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

Ti = TvA1
0A2

1 . . . Ai
i−1, i = 1, . . . , n ,

A1
0 =










cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0

0 0 0 1










,

A2
1 =










cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0

0 0 0 1










,

Tv =










cos φ sinφ 0 x0

− sin φ cos φ 0 y0

0 0 1 0

0 0 0 1










,

J1 =










1
3
m1 l1

2 0 0 − 1
2
m1 l1

0 0 0 0

0 0 0 0

−
1
2
m1 l1 0 0 m1










,

Jr =

[
−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]

,

J2 =










1
3

m2 l2
2 0 0 − 1

2
m2 l2

0 0 0 0

0 0 0 0

− 1
2

m2 l2 0 0 m2










,

Mv1 =






m 0 −mccd sin φ mccd sinφ
0 m mccd cos φ mccd cos φ

−mccd sinφ mccd cos φ Ic2 + Iw −Ic2

mccd sin φ −mccd cos φ −Ic2 Ic2 + Iw




 ,

Cv1 =







−mcdφ̇2 cos φ

−mcdφ̇2 sinφ
0
0







,

Ev =






0 0
0 0
1 0
0 1




 ,

Mv2
(ij) =

n∑

k=1

tr

[

∂Tk

∂vqi

Jk

∂Tk
T

∂vqj

]

, 1 ≤ i, j ≤ m,

Cv2
(i) = 2

n∑

j=1

m∑

k=1

n∑

h=j

tr

[

∂Th

∂vqi

Jh

∂2Th
T

∂rqj∂vqk

]

r q̇j · v q̇k

+
n∑

j=1

n∑

k=1

n∑

h=max(j,k)

tr

[

∂Th

∂vqi

Jh

∂2Th
T

∂rqj∂rqk

]

r q̇j ·
r q̇k,

Rv
(ij) =

n∑

k=j

tr

[

∂Tk

∂vqi

Jk

∂Tk
T

∂rqj

]

, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

Φ =






Φ1,1 Φ1,2 0 0
Φ2,1 Φ2,2 0 0

0 0 Φ3,3 Φ3,4

0 0 Φ4,3 Φ4,4




 ,

Φ1,1 = (cb − lyc) cos φ − lx sin φ,

Φ1,2 = (cb + lyc) cos φ + lx sin φ,

Φ2,1 = (cb − lyc) sinφ + lx cos φ,

Φ2,2 = (cb + lyc) sinφ − lx cos φ,

Φ3,3 = −l1 sin θ1 − l2 sin(θ1 + θ2),

Φ3,4 = −l2 sin(θ1 + θ2),

Φ4,3 = l1 cos θ1 + l2 cos(θ1 + θ2),

Φ4,4 = l2 cos(θ1 + θ2).
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