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GEOMETRIC CONTROL OF UNDERACTUATED MECHANICAL SYSTEMS

WITH APPLICATION FOCUS ON BIPEDAL ROBOTS

Abstract

by

Tan Chen

Underactuated mechanical systems (UMS) are mechanical systems with fewer con-

trols than the number of configuration states. The systems have broad applications

in robotics, aerospace and marine vehicles and many more areas. The application

examples include bipedal robots, quadruped robots, flexible-link robots, underac-

tuated manipulators, snake robots, acrobatic robots, robots on a mobile platform,

spacecraft, unmanned aerial vehicles, surface vessels and underwater vehicles. The

systems generally have highly nonlinear dynamics, and less control authority due to

the underactuation; furthermore, some systems, such as bipedal robots, include a

mixture of continuous and discrete dynamics and multiple switching events among

different phases. Because of these properties, control of UMS has been an important

and challenging problem for years.

The dynamics of almost all mechanical systems can be structured into a form

with a distribution of vector fields, and control of the systems can be treated as

controlled flows on configuration and velocity manifolds. A major contribution of

this dissertation is thus to exploit geometric approaches for control of a class of

UMS, which produces general fundamental results. First, in contrast with previous

work on controllability of underactuated serial robots, which mostly focused only on

a specific number of links, this thesis studies nonlinear controllability for a general
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N-link serial robot with one unactuated joint. Second, the time reversal symmetry,

which is inherent in many mechanical systems, is exploited to develop a general

control framework for a class of UMS, and the almost global controllability of the

method is proved by following the same line with Lyapunov’s method.

This dissertation also addresses robustness issues for underactuated bipedal robots,

which can be regarded as some balance between fully actuated and passive walking

robots. Thus, the underactuated biped makes a promising solution to balance the

competing issues of energy consumption and robustness. For the biped, the coupling

between velocities along the actuated and unactuated vector fields has been exploited

to define a nonlinear coupling metric, which can be used to quantitatively measure

the robustness of gaits. Considering that bipeds will eventually walk in unstructured

natural environments, this thesis further examines the problem of bipedal walking on

slippery surfaces, and presents some results that illustrate relationships among gait

features and the robustness for walking on slippery surfaces. A primary contribution

in this aspect is providing a nonlinear mechanical coupling metric and some design

insights, such as changing actuation methods, adjusting the center of mass location,

speeds and stride lengths, which can be used to improve the robustness of bipedal

robots.
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CHAPTER 1

INTRODUCTION

The application areas of control theory for mechanical systems are diverse and

challenging, and this constitutes an important factor for the control of mechanical

systems to be one of the most active research fields currently. Such areas of systems

include robotic systems, marine and aerospace vehicles, flight problems, and fluid

mechanics. The foundation for the study of mechanical systems can date back to

as early as the 17th century when Newton formulated Newton’s Law of Motion and

later the 18th century when Lagrange reformulated the classical mechanics, which

provide a more mathematically sophisticated and systematic framework [6]. This

thesis focuses on simple mechanical systems [14], which are characterized by the fact

that their Lagrangian is kinetic energy minus potential energy. A very large number of

applications, indeed the majority of robotic systems, are simple mechanical systems.

As a subject of the work on control of mechanical systems, control of underac-

tuated mechanical systems (UMS) is especially challenging, because there are fewer

actuators (controls) than the number of configuration states for such systems. On

the other hand, UMS appear in a broad range of applications, for example, biped

robots [117, 123], quadruped robots [98, 102, 92], flexible-link robots [112], underactu-

ated manipulators [88], snake robots [69], acrobatic robots [106, 109], surface vessels

[94, 116], spacecraft [37] and underwater vehicles [18]. Reasons for the underactua-

tion property can be broadly classified as follows: i) internal dynamics of the system,

such as biped robots, ii) design purpose to reduce cost or actuator failure (external

conditions), such as a surface vessel with only two thruster forces, and iii) artificially
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imposed constraints to gain insights into the control of underactuated systems, such

as the pendubot, acrobot1 etc. Because of such broad applications, control problems

of UMS are significant and have been widely studied for decades. This thesis also

contributes to this study from two aspects: in theory, it develops control results for

general UMS; in application, it focuses on improving the robustness of biped robots.

1.1 Nonlinear Control of UMS

In the control of UMS, controllability results are important for two reasons. First,

such controllability is a necessary condition for motion planning algorithms. If a sys-

tem is not controllable, it is then impossible to move the system to an arbitrary

state in the space. Secondly, controllability can provide insights into the design of

controllers. Generally speaking, there is a trade-off between the number of control

inputs and the sophistication of the control strategy. In other words, a system with

relatively few controls requires a sophisticated control strategy by exploiting partic-

ular geometry or nonlinear features of the system. For example, parallel parking2

a car can be accomplished by driving forward or backward and turning the wheel,

despite the fact that there is no direct control on the direction of parallel moving. It

is worth noting that UMS have fewer controls than the number of the configuration

states, and hence, a control approach that exploits nonlinear geometric methods or

some geometric features of the system is necessary for UMS.

One major topic in this dissertation is controllability for relatively general rigid-

body robots. Currently, many controllability results for serial-link robots are specifi-

cally for a specific number of links. This thesis develops accessibility and small-time

1A pendubot refers to a two-link pendulum that is only actuated at the first joint, while an
acrobot is only actuated at the second joint.

2It is not a mechanical system, but a very good example to illustrate the idea of “underactuation”
and “geometry”.
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local controllability (STLC) [113] results for N -link serial, horizontal, planar manipu-

lators with one unactuated joint, where a geometric approach based on Lie-algebraic

analysis is adopted. The intuitive idea of “geometry” is to consider a state trajectory

for a system as a flow along vector fields on the state manifold. By exploiting Lie

bracket operations [81], new vector fields may be generated and thus provide more

control “freedom” for the system.

The literature most relevant to the results in this thesis are as follows. Brockett et

al. [12] proved a necessary and sufficient condition when a continuous state-feedback

controller exists to asymptotically stabilizes a system around the origin [12]. Mur-

ray et al. used open-loop sinusoids to accomplish motion planning for nonholonomic

systems without drift, such as steering a kinematic car [80]. In parallel, Lafferriere

et al. developed another solution by manipulating Lie brackets that can give exact

solutions to solve the motion planning problem for controllable systems without drift

[64]. Furthermore, M’Closkey provided a time-varying state feedback controller to

exponentially stabilize such systems without drift, which cannot be stabilized with a

smooth feedback controller [78]. The results above are specifically for systems with-

out drift. UMS, however, have drift fields due to the fact that both positions and

velocities are states of the system, which thus causes more challenges in studying

controllability for UMS.

There is a bit of analogous work on UMS, however, for specific models. See [68]

for hovercraft, [14] for snakeboard, and [3, 72, 70, 15, 55] for serial manipulators

with a specific number of links. Again, these results applied to specific models.

The results which are closest to the work in this thesis, regarding a general N -link

manipulator, are in [40, 39], where certain aspects of the structure of the vector

fields in the equations of motion for the system were determined; however, they did

not fully work out the cases where STLC existed or failed and left the results in a

fairly general formulation. In developing controllability results for the N -link case,
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this thesis also presents all the details of the Lie bracket computations. Therefore,

one gap in the literature filled by the results in this dissertation is the relationship

between Lie bracket vector fields and various motion planning algorithms, such as

those presented in [49] and for other situations [64, 80, 16].

This dissertation also addresses the control of UMS by exploiting geometric fea-

tures of the systems. Most UMS can be classified into two categories based on the

operation method: on a vertical plane (with gravity) or on a horizontal plane (absent

of gravity). Gravity seemingly plays a negative role in hindering the control of sys-

tems. However, it helps design controllers because i) the gravity term generates one

more meaningful vector field (despite it being a drift field), and ii) stable equilibrium

states exist under the influence of gravity and linearization-based control approach

can be designed around the equilibria.

To design controllers for UMS, pendulums have been widely used because of

their interesting and relatively complicated dynamics. There is a vast literature on

pendulums. For the pendulums on a vertical plane, see [9, 105, 109, 106] for the partial

feedback linearization method on underactuated pendulums, [107, 45] for the energy-

based control method which does not require high gains, and [55] for stabilization of

a pendubot at the kinematic singularity point. However, none of these can effectively

deal with swing-up problems when there are very few control inputs for a relatively

large number of links, for example, a three-link pendulum with only one actuator. For

pendulums on a horizontal plane, where generally the linearization is not controllable

due to the absence of gravity, see [114] for an averaging technique in stabilization of

a two-link pendulum, [4] for a bi-directional searching method, and [41] for nilpotent

approximation and iterative steering to achieve point to point control. However, these

methods may have limitations such as requiring several stages to achieve the task,

lacking good accuracy or having issues at singular points. Therefore, this dissertation

also addresses these issues when developing control strategies for UMS on a vertical
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plane and on a horizontal plane.

1.2 Biped Robots

While control theory in mathematical form and its most general sense is beautiful,

it is more compelling and powerful only when applied to practical UMS applications,

such as biped robots. Moreover, the pendulum models that have been studied for

the control of UMS are closely related to bipeds. For example, two-link pendulums

have been commonly used as simple models to study biped locomotion: the pendubot

corresponds to an ankle-actuated biped; the acrobot corresponds to a hip-actuated

biped. Some controllability results on pendulums may be extended to apply for

bipeds, but it is worth noting that biped robots pose a more challenging problem

due to both the underactuation and hybrid, unilateral-constraint properties of such

systems. Hence, the final main topic in this dissertation is control of biped robots.

Despite their potential utility in a human-constructed environment, biped robots

are still far from ubiquitous. The obstacles to broader practical application of biped

robots (see Figure 1.1 for some representative bipeds) can be grouped into two core

control issues: robustness and efficiency. Most existing biped robots that locomote

robustly typically do so with energetically costly gaits, so they cannot operate au-

tonomously for long periods of time. For example, humanoid robots such as Honda’s

Asimo are typically controlled in a fully actuated manner, with relatively large feet

to transfer ankle torque to the ground [99].

In contrast to fully actuated bipedal robots are passive robots that walk down

shallow slopes [77, 75, 76], including in 3D [1, 35]. Passive walking bipeds are very

efficient from the perspective of energy consumption and can inform the control

of underactuated walking on flat ground [108, 36, 53]. The shortcomings of passive

bipeds include that they generally walk slowly and robustness in terms of disturbance

rejection capability is very limited.
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Figure 1.1. Biped robots (from left to right): Honda Asimo, ERNIE,
Passive Walker

Underactuated bipedal robots can be regarded as striking a balance between fully

actuated and passive walking robots. Thus, they make a promising solution to bal-

ance the competing issues of energy consumption and robustness. In some sense,

underactuated biped walking gaits are also closer to human walking than the other

two counterparts. Currently many underactuated biped robots are controlled with

the hybrid zero dynamics (HZD) approach [117], which applies Poincaré return maps

to design stable and periodic walking gaits.

The HZD framework has proven to be a powerful framework and has been ex-

tended in many ways since its inception. It was first proposed in [117], then experi-

mentally validated on bipeds such as RABBIT [31, 95] and ERNIE [122, 123], and

later applied to ERNIE with curved feet [74]. The approach was also extended to

running bipeds [32] and subsequently validated on RABBIT and MABEL [97, 111].

Grizzle’s group has developed the 3D formulation [33, 104, 54] and experimentally

validated it [19] with their point-foot robot MARLO [38]. None of these underac-

tuated bipeds, however, utilize ankle actuation in their designs. Some work in [119]
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briefly presented bipeds with feet and actuated ankles. Yet, the underactuated phase,

when the stance foot rotates about the stance toe, is equivalent to a hip-actuated

model. Ankle actuation is suggested to be more robust than hip actuation both in

posture control and locomotion for humans [82]. Hence, there is a value to more fully

understand ankle actuation in biped locomotion in order to inform the system design

of robust bipeds.

Although the HZD approach has paved the way for underactuated bipeds, their

disturbance rejection capabilities are still somewhat limited [96]. The work in [84,

85, 83, 50] exploited geometric control techniques to consider the coupling effect be-

tween actuated and unactuated velocities for UMS and developed useful results that

relate control authority with robustness. These were applied on theoretically well-

known nonholonomic mechanical systems such as the snakeboard [89, 13, 90, 17] and

rollerblader [34]. This coupling idea is adopted in this dissertation to study the ro-

bustness of bipeds for two reasons. First, the underactuated biped is a more practical

application of UMS, and it is challenging due to the hybrid and highly nonlinear prop-

erties. Secondly, the biped is also a Lagrangian underactuated mechanical system,

and the method is directly applicable.

Robustness, in a general sense, is an ability not only to reject disturbances, but

also to handle model uncertainties. Most current biped robots were modeled and

controlled with an assumption that there is no slip between the stance foot and

ground. To eventually take bipeds outside of human-made environments, slipping,

due low-friction surfaces, needs to be considered and well handled in order to improve

robustness. There is quite a bit of work on biped walking on slippery ground. See

[10, 93, 58, 59], which mostly treated slipping as a cause of falls and developed

methods to predict slipping and falling or to stabilize the robot at slipping. Slipping

can also be leveraged in a positive way. See [61, 79], which used the slip between the

stance foot and the ground for turning motion. This is indeed common in human
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walking when changing direction of the body. However, all the work considered a

fully-actuated robot.

In contrast, the slipping issue for underactuated bipeds has been recently stud-

ied. See [48, 20, 71] for related work which mostly concerns how to model slipping

phenomenon. There are still many open questions, such as validating different fric-

tion models, exploring relationships among slipping, falling and ground friction, and

optimizing model parameters to reduce the negative effects of foot slipping, and the

results in this dissertation address these questions. The study of slipping for un-

deractuated bipeds can yield fruitful and useful results, which can help build robust

bipeds. Because underactuated walking more resembles human walking, the HZD

control method has also been extended to exoskeleton designs for individuals with

spinal cord injury (SCI) [2]. In a broader sense, a better understanding of slipping

for biped robots can also inspire the design of exoskeletons which provide a more

effective recovery strategy.

1.3 Outline and Contributions of this Dissertation

The main contributions of this dissertation include i) some controllability results

and novel control synthesis methods obtained for UMS, in particular, rigid-body

robots, and ii) robustness study on biped locomotion with a geometric control ap-

proach. The two parts of the work are closely related because they are both under

the umbrella of control of UMS with geometric methods. On one hand, it is common

to adopt pendulums as simple abstractions for bipeds in the robotics community, and

thus, control of bipeds indeed shares a lot in common with that for different pendu-

lums, which are the major models this dissertation deals with in nonlinear control

of UMS. On the other hand, controllability is important also for biped robots. The

controllability results for UMS can provide insights into answering some questions for

controllability of bipeds, and thus, some control approaches for underactuated pen-
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dulums can be further extended to achieve biped walking with practical constraints

considered.

This dissertation, however, starts with the biped robot, which is a challenging

but very promising application of UMS. Following that, controllability and controller

design for UMS will be given. This arrangement has several advantages: i) the biped

robot is more interesting than control theory in some sense, and thus, it can inspire

readers to digest the work in this thesis; ii) the coupling idea in biped research,

which is also applicable to a general Lagrangian underactuated mechanical system,

is relatively novel compared with the controllability results. Going all the way from

novel knowledge to well-known nonlinear control approaches can, hopefully, help build

some meaningful connection between these two, which is also how the author came

through his research journey.

Chapter 2 presents the mathematical background which is primarily comprised

of topics from nonlinear control theory and differential geometry. Some well-known

theoretical control examples will also be given for tutorial purposes.

Chapter 3 contains control results for an ankle-actuated biped. The contribution

of this chapter has two major aspects: i) developing an ankle-actuated controller for

an underactuated biped, and ii) developing a nonlinear mechanical coupling metric

that is strongly negatively correlated with the robustness of a gait for the under-

actuated bipeds, such that the search for good gaits can be focused on gaits with

smaller coupling. Additionally, this chapter also compares ankle- and hip-actuated

bipeds regarding energetic efficiency and disturbance rejection ability, and compares

gait characteristics by varying model parameters, which can inform system design of

robust bipeds.

Chapter 4 contains foot slipping results for bipeds. The contribution of this chap-

ter is relaxing the assumption in modeling underactuated bipeds that there is no

slip between the stance foot and ground, and instead, developing a biped model that
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allows for foot slipping. It also proposes several safety factors for measuring robust-

ness of bipeds walking on slippery ground, which are used to determine relationships

among the robustness and some gait characteristics.

Chapter 5 contains controllability results for underactuated serial robots. The

controllability and accessibilty results are built by using Lie-algebraic computation

with all details of vector fields computed, and they apply to any N -link horizontal

planar manipulator with one actuated joint that can appear at any position.

Chapter 6 contains controller design for UMS. The contributions of this chapter

are two controller design methods - namely, a method based on time reversal sym-

metry that applies to UMS under the influence of gravity and a method based on

polynomial feedforward control that works for UMS on a horizontal plane.

Finally, Chapter 7 summarizes the results in this dissertation and provides details

of potentially fruitful future work.
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CHAPTER 2

BACKGROUND

This chapter reviews some basic differential geometry and nonlinear control results

upon which our results are based and presents some commentary to indicate the

role or interpretation of particularly important concepts. As over time, geometric

control theory has been included under the umbrella of nonlinear control theory,

which is represented by classical texts such as those by Isidori [57] and Nijmeijer

& van der Schaft [87], there is no clear boundary between geometric control and

nonlinear control for some concepts and definitions.

Section 2.1 reviews some basic differential geometry, which closely follows Chapter

3 in [14]. Some of the more basic control results have a nice geometric interpretation

and can be proved using geometric tools. Some concepts presented in this section

should also help readers digest the work in Chapters 3 and 4. Section 2.2 reviews

nonlinear control results that contain controllability and accessibility definitions and

theorems for nonholonomic (or underactuated) systems. This section is central for

establishing the results in Chapters 5 and 6. For constructive geometric approaches

to nonlinear motion planning problems, interested readers can refer to Appendix

A. Section 2.3 reviews feedback linearization control for nonlinear systems, which is

fundamental to designing controllers for bipeds in the thesis.
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2.1 Differential Geometry

2.1.1 Differentiable Manifolds

The basic object of differential geometry is a manifold, which is a set that is locally

homeomorphic to an open subset of Euclidean space. To define a manifold M , one

needs i) a local chart (Uα, φα), which is a homeomorphism map φα from a subset Uα

of the manifold M to an open subset of Euclidean space Rn, and ii) an atlas A =

{(Uα, φα)}a∈A, which is a collection of charts that cover the entire M , while satisfying

certain overlap conditions. A homeomorphism φα is a one-to-one map where φα and

its inverse are continuous. Given a point q ∈ Uα ⊂ M , the homeomorphism φα

defined on Uα is composed of n local coordinate functions (x1 (q) , . . . , xn (q)). If we

further require that φα be a smooth (differentiable) bijection that satisfies the usual

overlap condition, the family {(Uα, φα)}a∈A is called a differentiable structure.

To satisfy overlap conditions, whenever Ua∩Ub 6= ∅, it requires i) φa(Ua∩Ub) and

φb(Ua∩Ub) are open subsets of Rn, and ii) the overlap map φab , φb◦φ−1a | φa(Ua∩Ub)

is a Cr-diffeomorphism from φa(Ua ∩ Ub) to φb(Ua ∩ Ub), where r ∈ N ∪ {∞} ∪ {ω}1.

Such a manifold is called a Cr-differentiable manifold because it is endowed with a

Cr-differentiable structure. A smooth manifold M is a topological manifold endowed

with a C∞-differentiable structure. In the following context, the manifold M is

considered a smooth manifold unless there is specific indication.

Furthermore, a subset S of a Cr-manifold M is a Cr-submanifold if, for each point

x ∈ S, there is an admissible chart (U , φ) for M and x ∈ U , and such that i) φ takes

its values in a product Rk×Rn−k and ii) φ(U ∩S) = φ(U)∩(Rk×{0}). A chart (U , φ)

with these properties is a submanifold chart for S, and then (U ∩ S, φ | (U ∩ S)) is

a chart for S. If a submanifold S has a well-defined dimension as a manifold (k in

the definition is independent of x ∈ S) and the manifold M also has a well-defined

1A Cω-manifold represents an analytic manifold.
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dimension, dim(M)− dim(S) is the codimension of S.

Example 2.1 (Polar coordinates [14]). Consider a manifold M = R2. Define the

first chart by (U1, φ1) with U1 = M and φ1(x, y) = (x, y), and define another chart

(U2, φ2) with U2 = R2 \ {(x, 0) | x ≤ 0}, φ2(x, y) =
(√

x2 + y2, atan2 (y, x)
)

where

the function atan2 : R2 \ {(0, 0)} → (−π, π]. We have

φ1(U1 ∩ U2) = R2 \ {(x, 0) | x ≤ 0}, φ2(U1 ∩ U2) = {(r, θ) | r > 0, θ ∈ (−π, π)}.

Note here we use coordinates functions (x, y) for φ1 and coordinates (r, θ) for φ2. The

overlap map is φ12(x, y) =
(√

x2 + y2, atan2(y, x)
)

, and the inverse is φ−112 (r, θ) =

(r cos θ, r sin θ).

Furthermore, the Jacobians for the two maps are

Dφ12(x, y) =

 x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

 , Dφ−112 (r, θ) =

cos θ −r sin θ

sin θ r cos θ

 .
The Jacobians have continuous entries, so φ12 and φ−112 are differentiable, and φ12 is

a C1-diffeomorphism. In fact, the overlap is analytical, so M is a Cω-differentiable

manifold under this construction.

2.1.2 Tangent Spaces and Maps

For r ∈ N ∪ {∞} ∪ {ω}, let f : M → N be a map between Cr-manifolds, let

x ∈ M , and (U , φ) be a chart for which U is a neighborhood of x, and let (V , ψ) be

a chart for which V is a neighborhood of f(x), assuming f(U) ⊂ V . Thus, the local

representative of f : U → V w.r.t. the two charts is the map fφψ : φ(U)→ ψ(V) given

by

fφψ(x) = ψ ◦ f ◦ φ−1(x), (2.1)
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where x is the local coordinates φ(x). The local representative is a map between open

sets in Euclidean space. We say f : M → N is of class Cr if, for every point x ∈M ,

there exist coordinate charts (U , φ) and (V , ψ) as defined above, and for which the

local representative fφψ is of class Cr.

Given a manifold M and x ∈ M , a curve at x is a curve γ : I → M , where I

is an interval containing 0 in its interior, and for which γ[0] = x. Two curves γ1

and γ2 at x are equivalent at x if, in a coordinate chart (U , φ) with x ∈ U , the local

representative of γ1 and γ2 have the same derivative at 0. Denote it as γ1 ∼x γ2. The

equivalent class of γ will be denoted by [γ]x. A tangent vector at x is an equivalent

class of curves under the equivalent relation ∼x. The collection of all tangent vectors

at x is the tangent space at x, denoted by TxM .

Remark. Another perspective to look at the velocity (or tangent vector) of a curve

at a point is as follows. The velocity of γ at the point x of the curve γ is a linear

map

vγ,x : C∞(M)→ R s. t. vγ,x(f) := (f ◦ γ)′(0),

where C∞(M) := {f : M → R | f is a smooth function} is an R-vector space

equipped with the operations of vector addition and scalar multiplication,

(f ⊕ g)(p) := f(p) + g(p), (λ⊗ f)(p) := λ · g(p),

where p ∈M and λ ∈ R. The tangent space to M at the point x is the set

TpM := {vγ,x | for all smooth curves γ through x}.

Let (U , φ) and (V , ψ) be overlapping charts and x ∈ U ∩V . Let X ∈ TxM , denote

the coordinates of X in the chart (U , φ) as ((x1, . . . , xn), (v1, . . . , vn)) and denote the

coordinates in the chart (V , ψ) as ((x̃1, . . . , x̃n), (ṽ1, . . . , ṽn)). The local coordinates
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for the tangent vector are related by

ṽi =
∂x̃i

∂xj
vj, i ∈ {1, . . . , n}.

Previously, we defined a map f between manifolds. Now we define the derivative

of the map f : M → N . Let x ∈M and let [γ]x ∈ TxM . Then f ◦γ is a curve at f(x),

and we define Tf([γ]x) = [f ◦ γ]f(x). This defines a map Tf : TM → TN , called the

tangent map of f . If f ∈ Cr(M ;N), then Tf ∈ Cr−1(TM ;TN). The restriction of

Tf to the tangent space TxM is denoted by Txf , and Txf is a linear map such that

Txf : TxM → Tf(x)N .

To represent Tf in coordinates, let x = (x1, . . . , xn) be coordinates in a chart

(U , φ) defined in a neighborhood of x ∈M , and y = (y1, . . . , ym) be coordinates in a

chart (V , ψ) defined in a neighborhood f(x) ∈ N . Also assume that f(U) ⊂ V . The

local representative of the tangent map Tf is then

φ(U)× Rn 3 (x,v)→ (fφψ(x), Dfφψ(x) · v) ∈ ψ(V)× Rm.

If the local representation fφψ looks like

(x1, . . . , xn)→ (f 1(x), . . . , fm(x)),

the local representative of Tf looks like

((x1, . . . , xn), (v1, . . . , vn))→
((
f 1(x), . . . , fm(x)

)
,

(
∂f 1(x)

∂xj
vj, . . . ,

∂fm(x)

∂xj
vj
))

.

With the definition of a map f and a tangent map Tf between two manifolds

M and N , we can define submersion and immersion. Let f ∈ Cr(M ;N) for r ∈

N ∪ {∞} ∪ {ω}. For a subset A ⊂ M , we say that f is submersion on A if, for each
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x ∈ A, Txf is surjective. If f is a submersion on M , then it is simply a submersion.

If Txf is injective, f is an immersion at x. If f is an immersion at every x ∈ M ,

we say that it is an immersion. Intuitively speaking, the submersion is a projection

onto a subspace (from “larger” space to “smaller” space), while the immersion locally

looks like an inclusion of a subspace (from “smaller” space to “larger” space). To

determine it, we can compute the rank of the derivative of the map f . At points

where the derivative does not have the maximal rank, the local behavior of the map

is more difficult to classify and is the topic of singularity theory.

Definition 2.2 (Embedded and Immersed Submanifolds). Let N and M be Cr-

manifolds, r ∈ N ∪ {∞} ∪ {ω}. A subset S ⊂ M is a Cr-immersed submanifold

if there exists a manifold N and a Cr-injective immersion f : N → M for which

S = image(N). S is an embedded submanifold if and only if f is homeomorphism

onto its image.

Example 2.3 (Figure-Eight [66]). Consider the curve β : (−π, π) → R2 defined

by β(t) = (sin 2t, sin t). Its image looks like a figure-eight (without intersection) in

the plane. It is an immersed submanifold in R2 but not an embedded submanifold

because β is not a homeomorphism onto its image. The figure-eight itself is not a

manifold because at the center, there is no neighborhood that is homeomorphic to

R.

2.1.3 Vector Fields and Bundles

So far, we have focused technically on a single tangent space and a vector in it.

We are also interested in vector fields such that at any point of a manifold, there is

a vector. The proper way to deal with it technically is the theory of bundles.

A bundle is a triple E
π−→M that consists of a total space E, a base space M and

a projection map π. The fiber of a point in the base space is the preimage of the
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point under the projection map. In particular, a tangent bundle is the disjoint union

TM =
◦⋃

x∈M

TxM

of all tangent spaces. The tangent bundle projection is the map πTM : TM → M

defined by πTM(v) = x where v ∈ TxM . The tangent bundle of a manifold is itself a

manifold. The fiber for each point b ∈M is the tangent space TbM .

A section is a map from the base space to the total space with the following

property: if ξ is a section and b is a point in the base space, then ξ(b) belongs to the

fiber of b. In the case of the tangent bundle, a section associates to a point, a tangent

vector at that point. The section is also called a vector field.

Example 2.4 (Möbius vector bundle [14]). Define an equivalence relation R in the

set [0, 1]× R by

R = {((0, y), (1,−y)) | y ∈ R} ∪ {((x, y), (x, y)) | (x, y) ∈ (0, 1)× R}.

The Möbius vector bundle is ([0, 1] × R)/ ∼, where ∼ is equivalence defined by R.

Intuitively, since the edges of [0, 1]× R are identified with opposite orientations, the

vector bundle has a “twist”, much like the well-known Möbius strip.

A Cr-vector field on M is an element of Γr(TM), which includes all Cr sections

of the tangent bundle of M . If X ∈ Γr(TM) and f ∈ Cr(M), r ∈ N ∪ {∞} ∪ {ω},

the function LXf ∈ Cr−1(M) defined by x → df(x) · X(x) is the Lie derivative of

f w.r.t. X, where df(x) is the differential of f at x. The Lie derivative satisfies the

properties as follows:

1. The map f → LXf is R-linear w.r.t. the operations of vector addition and
scalar multiplication on Cr−1(M),

2. LX(fg) = (LXf)g + (LXg)f .
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To write the local representative of the Lie derivative, let (U , φ) be a chart with

coordinates (x1, . . . , xn). The coordinates may be regarded as functions on U . Fur-

thermore, we define n linearly independent basis vector fields ∂
∂x1
, . . . , ∂

∂xn
∈ Γ∞(TU),

which satisfy

L ∂

∂xi
xj = δji ,

where i, j ∈ {1, . . . , n}. Thus, if X ∈ Γ∞(TU), we may write X = X i ∂
∂xi

for functions

X i ∈ C∞(U), i ∈ {1, . . . , n} called the components of X in the chart (U , φ). The

local representative of LXf in a chart (U , φ) is

LXf(x) =
∂(f ◦ φ−1)

∂xi
(φ(x))X i(x). (2.2)

Let (U , φ) and (V , ψ) be overlapping charts on a C∞-manifold M with coordi-

nates (x1, . . . , xn) and (x̃1, . . . , x̃n), respectively. A vector field X has components

(X1, . . . , Xn) and (X̃1, . . . , X̃n) in the two charts (U , φ) and (V , ψ). Then transfor-

mation of vector fields and components under different charts is

∂

∂x̃i
=
∂xj

∂x̃i
∂

∂xj
X̃ i =

∂x̃i

∂xj
Xj, i ∈ {1, . . . , n}.

Given X, Y ∈ Γ∞(TM), the vector field [X, Y ] defined by

L[X,Y ]f = LXLY f − LYLXf, where f ∈ C∞(M), (2.3)

is the Lie bracket of X and Y . More properties about the Lie bracket will be discussed

in Section 2.2 because the Lie bracket is central to nonlinear control theory.

2.1.4 Connections

Previously we showed that a vector field X can be used to provide a directional

derivative of a function f ∈ Cr(M) in the direction X by Xf = df ·X = LXf . The
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notion can be generalized to the “directional derivative” of vector fields and tensor

fields, which is called a connection.

For r ∈ N ∪ {∞} ∪ {ω}, a Cr-affine connection ∇ on M assigns to the pair

(X, Y ) ∈ Γr(TM) × Γr+1(TM) a vector field ∇XY ∈ Γr(TM), and the assignment

satisfies

1. The map (X, Y )→ ∇XY is R-bilinear,

2. ∇fX+ZY = f∇XY +∇ZY where Z ∈ Γr(TM) and f ∈ Cr(M) and

3. (Leibnitz rule) ∇XfY = f∇XY + (LXf)Y .

The vector field ∇XY is called the covariant derivative of Y w.r.t. X. The connection

can also be extended to tensor fields. For example, it can take a pair consisting of a

vector (field) X and a (p, q)-tensor field2 T and send them to a (p, q)-tensor (field)

∇XT .

For vector fields X, Y on a chart (U , φ), the local representative of ∇XY can be

derived to be

∇XY = X i
(
∇( ∂

∂xi
)Y

m
) ∂

∂xm
+X i · Y m ·

(
∇( ∂

∂xi
)
∂

∂xm

)
= X i

(
∂

∂xi
Y m

)
∂

∂xm
+X i · Y m ·

(
Γqmi

∂

∂xq

)
.

By change of indices,

(∇XY )i = Xm

(
∂

∂xm
Y i

)
+Xm · Y n · Γinm. (2.4)

Note that we used

∇ ∂

∂xj

∂

∂xi
= Γkij

∂

∂xk
(2.5)

for n3 uniquely defined Cr-functions Γkij : U → R, i, j, k ∈ {1, . . . , n}. These func-

tions are called connection coefficients for ∇ in the chart (U , φ). They are central

2A (p, q)-tensor field at each point x ∈M takes p covectors and q vectors and outputs a scalar.
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to the definition of the covariant derivative of a vector field. Now let (U , φ) and

(V , ψ) be overlapping charts on a C∞-manifold M with coordinates (x1, . . . , xn) and

(x̃1, . . . , x̃n), respectively. The change of connection coefficients under change of

charts is

(Γφ)ijk =
∂x̃i

∂xq
∂2xq

∂x̃k∂x̃j
+
∂x̃i

∂xq
∂xs

∂x̃j
∂xp

∂x̃k
(Γψ)qsp .

Intuitively, the connection is embedded with curvature information of the man-

ifold. A vector field X on M is said to be parallelly transported along a curve

γ : R → M if
(
∇vγ ,γ(λ)X

)
γ(λ)

= 0. A slightly weaker condition is parallel if(
∇vγ ,γ(λ)X

)
γ(λ)

= µ(λ)Xγ(λ) for µ : R → R. A curve γ on a manifold M is called

autoparallelly transported if ∇vγvγ = 0. In physics, it is the uniform straight line

(sometimes we simply call it the straight curve).

2.1.5 Metric Manifolds and Geodesics

In the preceding section, we established a structure (“curvature”) on a manifold

by introducing connection. In this section, we will establish another structure on

the manifold that allows one to assign vectors in each tangent space a length and an

angle between vectors in the same tangent space. Based on this structure, the notion

of length of a curve can be defined. This structure is called a metric. Although the

connection and metric are two independent structures mathematically, requiring that

the shortest (or longest or stationary) curves coincide with the straight curve w.r.t.

∇ will result in the ∇ determined by the metric structure g.

A metric g on a manifold M is a (0, 2)-tensor field satisfying i) symmetry, such

that g(X, Y ) = g(Y,X) for ∀X, Y ∈ Γ(TM), and ii) non-degeneracy. The metric can

help define the musical map:

flat Z : Γ(TM)→ Γ(T ∗M) with X → Z(X),
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where the covector field Z(X) ∈ Γ(T ∗M) and Z(X)(Y ) := g(X, Y ). This musical map

is a C∞-isomorphism. In a similar fashion, we can define an “inverse” of the flat

symbol

sharp \ : Γ(T ∗M)→ Γ(TM) with ω → \(ω).

In local coordinates, we can write (Z(X))i := gijX
j and (\(ω))i = gijωj, and

superscripts on g indicate the inverse, i.e., gij = g−1ij .

The (1, 1)-tensors, such as a 2-dimensional matrix, have eigenvalues. Similarly,

the metric g, which is a (0, 2)-tensor, has signature. A metric is called Riemannian if

its signature is (+ + · · ·+). On a Riemannian metric manifold, the speed of a curve

at γ(λ) is the number

s(λ) =

(√
g (vγ, vγ)

)
γ(λ)

.

Let γ : (0, 1)→M be a smooth curve. Then the length of γ, L[γ] ∈ R is the number

L[γ] :=

∫ 1

0

s(λ)dλ =

∫ 1

0

(√
g (vγ, vγ)

)
γ(λ)

dλ.

Example 2.5 (Round Sphere [100]). Consider a sphere in a chart (U , φ) with local

coordinates ψ and θ, where ψ ∈ (0, 2π) and θ ∈ (0, π). Define a metric on the same

chart

gij(φ
−1(θ, ψ)) =

R2 0

0 R2 sin2 θ


ij

where R ∈ R+. This metric actually defines a round sphere of radius R. Now consider

a curve γ : (0, 1)→M on the equator

θ(λ) := (x1 ◦ γ)(λ) =
π

2
, ψ(λ) := (x2 ◦ γ)(λ) = 2πλ3.
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Therefore, the local representatives of the tangent vector on the curve are

θ′(λ) = 0, ψ′(λ) = 6πλ2.

We can compute the length of the curve in this chart with the metric gij

L[γ] =

∫ 1

0

dλ
√
gij (φ−1 (θ (λ) , φ (λ))) · (xi ◦ γ)′ (λ) · (xj ◦ γ)′ (λ) = 2πR.

A curve γ : (0, 1) → M is called a geodesic on a Riemannian manifold if it is a

stationary curve w.r.t. a length function L. In classical mechanics, γ is geodesic if

and only if it satisfies the Euler-Lagrange equations for the Lagrangian L : TM → R

with X →
√
g(X,X).

In a chart, the Euler-Lagrange equations take the form

(
∂L
∂γ̇m

)′
− ∂L
∂γm

= 0.

After calculation along with a reparameterization g(γ̇, γ̇) = 1, we can obtain

γ̈q + gqm
1

2
(∂igmj + ∂jgmi − ∂mgij)γ̇iγ̇j = 0. (2.6)

Note again that superscripts on g indicate the inverse. Define the connection coeffi-

cient

gqm
1

2
(∂igmj + ∂jgmi − ∂mgij) =: Γqij(γ(λ)), (2.7)

and thus, the geodesic Equation (2.6) for γ makes the curve a straight curve with

the connection coefficient Γqij defined in Equation (2.7). This connection coefficient is

also called Christoffel symbol, and such a connection is called a Levi-Civita connection

L.C.∇.
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2.2 Nonlinear Control Theory

2.2.1 Vector Fields and Lie Brackets

This thesis is concerned with differential equations of the form

ẋ = f(x) +
m∑
i=1

gi(x)ui, (2.8)

defined on a smooth manifold M , where x ∈ M represents the state of the control

system, ui are the control inputs, which belong to a set of admissible controls, ui ∈ U ,

and f(x) and gi(x) are vector fields on M . When f(x) is identically zero, this system

is called a driftless system; otherwise, it is called a system with drift, and f(x) is the

drift term.

Associated with vector fields, we define the flow of vector fields to represent the

solution to the differential Equation (2.8). Specifically, we can use φgt (x) to represent

the solution of the differential equation ẋ = g(x) at time t starting from the state x at

time 0. Now we can discuss the Lie bracket from the perspective of control systems

(because the Lie bracket was presented in Equation (2.3) in Section 2.1).

Definition 2.6 (Lie bracket). Consider two vector fields g1 and g2, the Lie bracket

between g1(x) and g2(x), in coordinates, is computed by

[g1(x), g2(x)] =
∂g2(x)

∂x
g1(x)− ∂g1(x)

∂x
g2(x).

The Lie bracket is indeed the leading term in an infinitesimal motion that results

from flowing around a square defined by the two vector fields g1 and g2, i.e.,

φ−g2ε ◦ φ−g1ε ◦ φg2ε ◦ φg1ε (x) = x+ ε2[g1, g2](x) +O(ε3), (2.9)

where ◦ stands for composition of flows. For example, φg1t ◦ φg2s = φg1t (φg2s ). If
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[g1, g2] = 0, it can be shown that the right-hand side of Equation (2.9) is identically

equal to x and g1 and g2 are said to commute. Otherwise, a “new direction” may

be generated with the Lie bracket in which the system can flow. An important

relationship between flows of vector fields is given by the Campbell-Baker-Hausdorff

formula:

φg2ε ◦ φg1ε (x) = φ
g1+g2+

1
2
[g1,g2]+

1
12

([g1,[g1,g2]]−[g2,[g1,g2]])+···
ε (x). (2.10)

If given the composition of flows among multiple vector fields, this formula gives one

flow along one vector field, which results in the same net flow.

The following properties of a Lie bracket follow from the definition.

1. Skew-symmetry: [g1, g2] = −[g2, g1],

2. Jacobi identity: [g1, [g2, g3]] + [g3, [g1, g2]] + [g2, [g3, g1]] = 0, and

3. Chain rule: [αg1, βg2] = αβ[g1, g2] + α(Lg1β)g2 − β(Lg2α)g1, where Lg1β and
Lg2α are the Lie derivatives (directional derivatives) of β and α along the vector
fields g1 and g2, respectively.

Note that the first two of these properties make the set of smooth vector fields

equipped with the Lie bracket a Lie algebra3. These properties will also play a

central role in the nonlinear controllability results and motion planning problems

that use the “breaking and patching” of brackets.

In nonlinear control theory, the reachable set of points for a system is fundamen-

tally important. This is related to all possible directions the system can move. The

distribution provides the definition for a complete family of all possible directions.

Definition 2.7 (Distribution). Let M be a manifold. A distribution assigns a sub-

space of the tangent space to each point in M in a smooth way. A distribution ∆

is involutive if, for any two vector fields X, Y ∈ ∆, [X, Y ] ∈ ∆. A distribution ∆ is

integrable if, for any x ∈ M , there exists a submanifold N ⊂ M containing x such

that the tangent bundle, TN , is exactly ∆ restricted to N , i.e., TN = ∆|N .

3A Lie algebra is a vector space together with an operation called the Lie bracket.
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It is natural to define distributions by a set of vector fields in Equation (2.8).

Thus,

∆ = span{f, g1, . . . , gm}. (2.11)

When evaluated at a specific point x ∈M , the distribution defines a linear subspace

of the tangent space

∆x = span{f(x), g1(x), . . . , gm(x)} ⊂ TxM.

The distribution is said to be regular if the dimension of the subspace ∆x does not

vary with x. By definition, a distribution of constant dimension k is integrable if, for

any point x ∈ M , there exists a set of functions hi : M → R, i = 1, . . . , n − k such

that

{x ∈M : h1(x) = c1, . . . , hn−k(x) = cn−k}.

For a control system in Equation (2.8), the constants c1, . . . , cn−k depend on the

initial condition.

Frobenius’ theorem asserts that integrability and involutivity of a distribution

are equivalent. Thus, if ∆ is a k-dimensional involutive distribution, the manifold

M is partitioned into disjoint immersed submanifolds called leaves. These leaves are

related to the set of points that a control system can reach starting from a given

initial condition. Such a partition is called a foliation.

To define nonlinear controllability, we need to further define ∆, which is the

involutive closure of ∆. Then, ∆ is the closure of ∆ under Lie brackets. Elements of

∆ are obtained by taking all linear combinations of elements of f, g1, . . . , gm, taking

Lie brackets of these, taking all linear combinations of these, and so on, i.e.,

∆ = span{f, g1, . . . , gm, [f, g1], [f, g2], . . . , [f, [f, g1]], . . . }. (2.12)
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The rank of ∆ at a point x ∈ M is called the dimension of ∆x. Because of the

skew-symmetry and Jacobi identity properties of a Lie bracket, not all elements in

the distribution ∆ are independent. In order to select a basis for the distribution,

we can use a Philip Hall basis, which is a particular way that takes into account

skew-symmetry and the Jacobi identity.

Definition 2.8 (Philip Hall basis). Given a set of vector fields {g1, . . . , gm}, define

the length of a Lie product as

l(gi) = 1

l([A,B]) = l(A) + l(B),

where i = 1, . . . ,m, and A and B are Lie products (vector fields or Lie brackets). A

Philip Hall basis is an ordered set of Lie products H = Bi satisfying:

1. gi ∈ H, i = 1, . . . ,m

2. If l(Bi) < l(Bj) then Bi < Bj

3. [Bi, Bj] ∈ H if and only if

(a) Bi, Bj ∈ H and Bi < Bj and

(b) either Bj = gk for some k or Bj = [Bl, Br] with Bl, Br ∈ H and Bl < Bi.

The proof that a Philip Hall basis is a basis for the Lie algebra can be found in

[103]. A Lie algebra is nilpotent if there exists an integer k such that all Lie products

of length greater than k are zero. The k is called the order of nilpotency. For a

Lie algebra with nilpotency of order k, the Philip Hall basis can be obtained by first

constructing all possible Lie products with length less than or equal to k and then

using the definition to eliminate elements that fail to satisfy one of the properties.
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2.2.2 Nonlinear Controllability

This section reviews definition of nonlinear controllability and various approaches

to test it. A good introduction to nonlinear control theory, which includes many

of the necessary differential geometric concepts, can be found in [57] and [87]. To

facilitate the understanding, we will first restrict our attention to kinematic control

systems

ẋ = g1(x)u1 + · · ·+ gm(x)um. (2.13)

Recall that such systems are also called driftless. Compared with the systems in

Equation (2.8), the states of kinematic control systems remain unchanged when the

controls are set to zero.

First, it is necessary to define a “reachable set”. Given an open set V ⊆M , define

RV (x0, T ) to be the set of states x such that there exists u : [0, T ] → U that steers

the system from x(0) = x0 to x(T ) = xf and satisfies x(t) ∈ V for 0 ≤ t ≤ T , where

U is the set of admissible controls. Furthermore, define

RV (x0,≤ T ) =
⋃

0<τ≤T

RV (x0, τ)

to be the set of states reachable up to time T .

Controllability of a system can have various definitions. A relatively common

definition of controllability is that a system is controllable if for any x0, xf ∈M there

exists a finite time T > 0 and u : [0, T ]→ U such that the system satisfies x(0) = x0

and x(T ) = xf . This definition is referred to as global controllability in this thesis. A

system is said to be small-time locally controllable at x0 if it can reach nearby points

in arbitrarily small amounts of time and stay near x0 at all the times.

Definition 2.9 (Small-time local controllability). A system is small time locally

controllable (“STLC” or simply “locally controllable”) if RV (x0,≤ T ) contains a

27



neighborhood of x0 for all neighborhoods V of x0 and T > 0.

By using the distribution in Equation (2.12), which essentially contains all the

possible directions along which the system can move, we can test the local con-

trollability of control systems. This is made precise by the following theorem and

proof, which essentially applies recursive construction and input-reverse for driftless

systems, from [81].

Theorem 2.10 (Chow). The control system (2.13) is locally controllable at x ∈ M

if ∆x = TxM .

In other words, this result asserts that the driftless system is locally controllable if

the rank of the distribution ∆ at the point x is equal to the dimension of the tangent

space to x ∈M . This theorem is also referred to as the controllability rank condition.

In principle, we should be able to solve the motion planning problem for systems

that meet the controllability rank condition, by connecting the initial point x0 and

final point xf via finitely many intermediate points x1, x2, . . . , xp. The difficulty with

this procedure is that they are not constructive. Constructive approaches for motion

planning can be found in Appendix A.

For mechanical systems described by Equation (2.8), however, Chow’s theorem

does not directly apply because of the drift term f(x). In a comparable way, we

define local accessibility from x0 ∈ M if the set of reachable states from x0 within

time T has a non-empty interior for all T > 0. The following theorem provides an

approach to test the local accessibility [87].

Theorem 2.11 (Accessibility Theorem). The system described by Equation (2.8)

is locally accessible from x0 ∈ M if and only if dim ∆(x0) = n, with n to be the

dimension of the tangent space to x ∈M .

For a system that is locally accessible from almost any state, it may lose the

full rank condition for accessibility at some states, which we call singular. Note
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that accessibility is a necessary but not sufficient condition for controllability for

mechanical systems. To test STLC for such systems, we will first need to define good

and bad brackets.

Consider a Lie bracket B generated from the vector fields on a manifold M ,

and δ0(B), δ1(B), . . . , δm(B) representing the numbers of occurrence of the vector

fields f, g1, . . . , gm in B, respectively. The bracket B is bad if δ0(B) is odd and

δ1(B), . . . , δm(B) are all even (including zero). A bracket is good if it is not bad. A

θ-degree δθ(B) is defined for the vector field B by

δθ(B) =
m∑
j=0

θjδ
j(B), (2.14)

where the numbers θ0, θ1, . . . , θm satisfy θj ≥ θ0 ≥ 0, j = 1, . . . ,m. A bad bracket is

said to be θ-neutralized if it is a linear combination of lower θ-degree good brackets.

With the definition of good and bad brackets, a theorem to test STLC is given as

follows [8].

Theorem 2.12 (STLC Theorem). A system described by Equation (2.8) is STLC

from an equilibrium point if there exist a sufficient number of good brackets at the equi-

librium point to span the full-dimensional space and all bad brackets are θ-neutralized.

Example 2.13 (Controllability of hovercraft). Consider the hovercraft in Figure 2.1.

The model dynamics are

mẍ = F1 cos θ − F2 sin θ mÿ = F1 sin θ + F2 cos θ Jθ̈ = −F2l.
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Define the states [q1, q2, q3, q4, q5, q6] = [x, y, θ, ẋ, ẏ, θ̇]. Thus,



q̇1

q̇2

q̇3

q̇4

q̇5

q̇6


=



q4

q5

q6

0

0

0


︸ ︷︷ ︸
f

+



0

0

0

cos(q3)
m

sin(q3)
m

0


︸ ︷︷ ︸

g1

F1 +



0

0

0

− sin(q3)
m

cos(q3)
m

− l
J


︸ ︷︷ ︸

g2

F2.

For the system, we can obtain six independent vector fields that are good Lie brack-

ets at equilibrium points (see the following Lie brackets), and the bad Lie brackets

at equilibrium points can be neutralized by lower-order good Lie brackets, such as

[g1, [f, g1]] = 0 and [g2, [f, g2]] can be neutralized by g1. Therefore, the hovercraft is

STLC from equilibrium states.

g1 =



0

0

0

cos(q3)
m

sin(q3)
m

0


g2 =



0

0

0

− sin(q3)
m

cos(q3)
m

− l
J


[f, g1] =



− cos(q3)
m

− sin(q3)
m

0

0

0

0



[f, g2] =



sin(q3)
m

− cos(q3)
m

l
J

0

0

0


[g1, [f, g2]] =



0

0

0

l sin(q3)
mJ

− l cos(q3)
mJ

0


[f, [g2, [f, g1]]] =



− l sin(q3)
mJ

l cos(q3)
mJ

0

0

0

0


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Figure 2.1. Hovercraft.

2.3 Feedback Linearization Control of Nonlinear Systems

In the preceding section, we introduced the definition of nonlinear controllability

and several theorems to test it. This section considers nonlinear controller design

based on exact feedback linearization. The results are fundamental to designing

controllers for bipedal robots in this thesis.

2.3.1 Input-State Feedback Linearization

Consider a system of the form

ẋ = f(x) + g(x)u (2.15)

and a change of the control variable u combined with a coordinate transformation,

which transform Equation (2.15) into a linear dynamical system. If such a change

of control variable and coordinate transformation can be found and the transformed

linear system is controllable, we say that the system (2.15) is input-state (exact)

feedback linearizable. Then controller design for the original system can be achieved

by considering the transformed linear system.

In other words, given a point p, this approach is to find

1. A neighborhood U of p,
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2. A feedback law u = α(x) + β(x)v defined on U , and

3. A coordinate transformation z = T (x) (also defined on U),

such that the corresponding closed-loop system

ẋ = f(x) + g(x)α(x) + g(x)β(x)v

in the coordinate z = T (x) is linear and controllable. The following theorem provides

necessary and sufficient conditions for the solvability of such a feedback linearization

problem. Proof details can be found in [57].

Theorem 2.14 (Feedback Linearization). The system in Equation (2.15) is input-

state feedback linearizable if and only if there is a neighborhood V of U such that

• The matrix G(x) = [g(x) adf g(x) . . . adn−1f g(x)] has rank n for all x ∈ V .

• The distribution ∆ = span{g, adf g, . . . , adn−2f g} is involutive in V ,

where adkf g(x) = [f, adk−1f g](x) for all k ≥ 1 with ad0
f g(x) = g(x).

After the conditions are checked, the controller design can follow several steps.

1. Solve the partial differential equations for h(x)

∂h

∂x
[g(x) adf g(x) . . . adn−2f g(x)] = 0.

2. Set

α(x) =
−Lnfh(x)

LgL
n−1
f h(x)

, β(x) =
1

LgL
n−1
f h(x)

to get the feedback controller.

3. Set

T (x) =


h(x)
Lfh(x)

...
Ln−1f h(x)


to get the linearizing coordinate transformation.
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2.3.2 Input-Output Feedback Linearization

In many applications, it is the input-output behaviour that we really care about.

The approach to such feedback linearization is called input-output feedback lineariza-

tion.

Consider a scalar input-output system

ẋ = f(x) + g(x)u, y = h(x), (2.16)

where y is the output. The derivative of the output is

ẏ = Lfh(x) + Lgh(x)u.

Note that if Lgh(x) = 0, ẏ is independent of u. Then we will repeat taking derivatives

of y until the control u appears in some derivative expression. In particular, we require

that there exists an integer p such that h(x) satisfies

LgL
i−1
f h(x) = 0

LgL
p−1
f h(x) 6= 0,

where i = 1, 2, . . . , p − 1. So u does not appear in the equations for the first p − 1

derivatives of y. But for the p-th derivative, we have

dpy

dtp
:= y(p) = Lpfh(x) + LgL

p−1
f h(x)u,

and it suggests that introducing a control of the form

u =
1

LgL
p−1
f h(x)

(
−Lpfh(x) + v

)
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can achieve a linear relationship from the input to the output such that

y(p) = v.

The integer p is called the relative degree of the input-output system.

With the input-output linearization approach, we can now transform the system

in Equation (2.16) to a normal form. Assume that the system has a relative degree

r at a point x0. The steps are as follows

1. Define the state variables

z1 = T1(x) = h(x) Note that this is the output function.

z2 = T2(x) = Lfh(x)

... =
...

zr = Tr(x) = Lr−1f h(x)

2. Find n − r additional functions Ti for i = r + 1, . . . , n such that LgTi(x0) = 0
and the Jacobian of

T (x) =

T1(x)
...

Tn(x)

 =

z1...
zn


is nonsingular in a neighborhood of x0.

3. Partition the z states into two sets

ξ =

z1...
zr

 η =

zr+1
...
zn


and rewrite the state equations in terms of ξ and η to obtain

ξ̇ = Acξ +Bc(b(x) + a(x)u)

η̇ = q(ξ, η)

y = Ccξ

(2.17)
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where

Ac =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 Bc =


0
...
0
1

 Cc =
[
1 0 . . . 0

]
.

Equation (2.17) is called the normal form of the scalar input-output system. Thus,

the original system is decoupled into two subsystems about ξ and η.

If we set y(t) = ξ1(t) = 0 for all t, this implies that

ξ̇1 = ξ̇2 = · · · = ξ̇r = 0, ξ1 = ξ2 = · · · = ξr = 0.

The input u0 maintaining this zero trajectory must be such that

ξ̇r = 0 = b(0, η) + a(0, η)u0,

where η satisfies the state equation

η̇ = q(0, η), η(0) = η0. (2.18)

Therefore, if we demand y(t) = 0 for all t, we require

u0(t) = − b(0, η(t))

a(0, η(t))
.

Each different initial state (0, η0) has a unique input u0(t) capable of keeping y(t) = 0

for all t. The dynamical system in Equation (2.18) is called the zero dynamics of the

system.

If the zero dynamics, η̇ = q(0, η), is locally asymptotically stable, the original

system in Equation (2.15) is said to be locally minimum phase at its equilibrium x∗.

Otherwise, the entire system is said to be non-minimum phase.
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CHAPTER 3

NONLINEAR MECHANICAL COUPLING FOR UNDERACTUATED BIPEDS

This chapter presents a nonlinear mechanical coupling metric, which provides a

measure of the robustness of the control authority to disturbances in the uncontrolled

directions. This coupling metric is general and can apply to any underactuated

Lagrangian mechanical systems such as underactuated bipeds. Section 3.1 introduces

the coupling and uses a simple example to illustrate the computation procedure. In

order to show the relationship between the coupling and robustness of underactuated

bipeds, an ankle-actuated biped is adopted. Control of the ankle-actuated model and

gait feasibility analysis are presented in Section 3.2. With a family of feasible gaits,

Section 3.3 presents the relationships among the metric, robustness and efficiency

for the biped. The results are general in that they apply to models with varying

parameters, such as mass, leg length, CoM and moment of inertia, and to both

ankle- and hip-actuated bipeds.

3.1 Nonlinear Mechanical Coupling Metric for UMS

For a mechanical system with a Lagrangian L = T − V , a curve γ(t) satisfying

the Lagrange-d’Alembert principle [14] has the form

∇γ̇(t)γ̇(t) = G] (F (t)− gradV (γ (t))) , (3.1)

where ∇ is the covariant derivative and G] is the musical isomorphism between the

cotangent and tangent bundles (relating in this case cotangent forces to tangent
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velocities), and, in coordinates, is the inverse of the inertia tensor. In coordinates we

have1

θ̈i + Γijkθ̇
j θ̇k = τaGikF a

k −Gik ∂V

∂θk
, (3.2)

where superscripts on G indicate the inverse, Fk are the components of the applied

torques with magnitudes τa and

Γkij =
1

2
Gkl

(
∂Gil

∂θj
+
∂Gjl

∂θi
− ∂Gij

∂θl

)
.

In order to consider the system as decomposed into actuated and unactuated direc-

tions, define the input vector fields by

Y j
a = GjkF a

k .

When considering analyzing control efficacy, we need a means to compute the

unactuated directions. In the current context, the unactuated directions will be or-

thogonal to the actuated directions and specifically orthogonal in the sense of the

kinetic energy metric, i.e., let Y⊥,b satisfy

Y i
⊥,bGijY

j
a = Y i

⊥,bGijGjkF a
k = 〈〈Y⊥,b, Ya〉〉G = Y k

⊥,bF
a
k = 0

and have unit length w.r.t. G,

Y i
⊥,bGijY

j
⊥,b = 〈〈Y⊥,b, Y⊥,b〉〉G = 1.

We will furthermore assume that the input vector fields Ya have been similarly nor-

1The total control force F is a linear combination of the one-forms F 1, . . . , Fm with F = τaF a

where summation is assumed over the repeated indices a. Thus, the one-form F a can be written in
coordinates F a = F a

k e
k where ek is the basis in the cotangent space.
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malized,

〈〈Ya, Ya〉〉G = 1.

The approach is general in that it is independent of the number of actuators

and degree of underactuation. Because the kinetic energy metric G depends on

configuration, both Ya and Y⊥,b can, in general, be configuration-dependent.

The foundation of the approach is to decompose a given velocity γ̇ along the

actuated directions and unactuated directions,

γ̇ = w1Y1 + w2Y2 + · · ·+ wnYn + s1Y⊥,1 + · · ·+ smY⊥,m. (3.3)

Because the w terms are the coefficients of the actuated directions, Yi, the inputs

directly control their rate of change. In contrast, because the s terms are orthog-

onal to the inputs, they can only be affected by the inputs through the coupling of

the actuated and unactuated velocities in the natural dynamics of the system. To

determine expressions for wi and sj, multiply Equation (3.3) on the left by (YiG)T

and (Y⊥,jG)T , respectively. That is, by using a G-orthogonal set of actuated and

unactuated velocity directions, the components along each can be determined by the

projection

wi = 〈〈Yi, w1Y1 + · · ·+ wnYn + s1Y⊥,1 + · · ·+ smY⊥,m〉〉G

sj = 〈〈Y⊥,j, w1Y1 + · · ·+ wnYn + s1Y⊥,1 + · · ·+ smY⊥,m〉〉G.

Our primary interest is in determining the degree of dynamic coupling between

the actuated and unactuated directions. This is expressed by computing the time
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derivatives of s. In intrinsic form, it is given by

d

dt
sj(t) = −wa(t)wp(t)〈〈∇YaYp, Y⊥,j〉〉G − wa(t)sr(t)〈〈∇YaY⊥,r, Y,⊥,j〉〉G

− sr(t)wp(t)〈〈∇Y⊥,rYp, Y⊥,j〉〉G − sr(t)sb(t)〈〈∇Y⊥,rY⊥,b, Y⊥,j〉〉G

− 〈〈gradV, Y⊥,j〉〉G.

(3.4)

A complete derivation can be found in [86].

The critical point w.r.t. Equation (3.4) is that the inputs do not directly affect it,

i.e., τ does not appear in the equation. The unactuated velocity magnitude, s is only

changed by the mechanical dynamics. Furthermore, one measure of the degree of

control authority in the system is the degree to which the actuated velocity directions

are directly coupled with the derivative of s, which are expressed by the top three inner

products in Equation (3.4). The top three terms are referred to as the coupling terms,

and the fifth (final) term is referred to as the gravity term.

In coordinates, Equation (3.4) is given by

d

dt
sj(t) = −wa(t)wp(t)

(
∂Y k

p

∂θi
Y i
a + ΓkijY

j
a Y

i
p

)
GklY

l
⊥,j

− wa(t)sr(t)

(
∂Y k
⊥,r

∂θi
Y i
a + ΓkijY

j
a Y

i
⊥,r

)
GklY

l
⊥,j

− sr(t)wp(t)

(
∂Y k

p

∂θi
Y i
⊥,r + ΓkijY

j
⊥,rY

i
p

)
GklY

l
⊥,j

− sr(t)sb(t)

(
∂Y k
⊥,b

∂θi
Y i
⊥,r + ΓkijY

j
⊥,rY

i
⊥,b

)
GklY

l
⊥,j

− ∂V

∂θl
Y l
⊥,j.

(3.5)
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Figure 3.1. Ankle-actuated biped.

If we define the following three bilinear forms

WW pa (Yp, Ya) =

(
∂Y k

p

∂θi
Y i
a + ΓkijY

j
a Y

i
p

)
GklY

l
⊥,j

WSa1 (Ya) =

(
∂Y k
⊥,r

∂θi
Y i
a + ΓkijY

i
aY

j
⊥,r

)
GklY

l
⊥,j

WSp2 (Yp) =

(
∂Y k

p

∂θi
Y i
⊥,r + ΓkijY

i
⊥,rY

j
p

)
GklY

l
⊥,j,

(3.6)

they provide the degree of coupling between the directly actuated w-directions and

unactuated s-directions. We can evaluate these terms for all configurations along a

trajectory, and their magnitude provides a measure of the robustness of the control

authority to disturbances in the unactuated velocity directions [28, 24].

Let us use an ankle-actuated biped model in Figure 3.1 to illustrate the compu-

tation procedure. Because the robot model is actuated only at the ankle joint, it has

only one input vector field (actuated direction) Ya and only one unactuated direction

Y⊥. The input torque is defined by F = τ [1; 0].

Following the computation process of Equations (3.1) through (3.6), the G-normalized
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actuated direction and unactuated direction are

Y1 =


√
J+m(l−lc)2√

A

−ml(l−lc) cos(q1−q2)
√
J+m(l−lc)2

(J+m(l−lc)2)
√
A

 (3.7)

Y⊥ =

 0

1√
J+m(l−lc)2

 , (3.8)

the actuated and unactuated velocity magnitudes are

w =

√
A√

J +m(l − lc)2
q̇1

s =
ml(l − lc) cos(q1 − q2)√

J +m(l − lc)2
q̇1 +

J +m(l − lc)2√
J +m(l − lc)2

q̇2,

(3.9)

and the three bilinear forms are

WW 11 (Y1, Y1) =
m2l2 (l − lc)2 sin (2 (q1 − q2))

2A
√
J +m (l − lc)2

WS1
1 (Y1) = 0

WS1
2 (Y1) = −ml (l − lc) sin (q1 − q2)√(

J +m (l − lc)2
)
A
,

(3.10)

where in Equations (3.7), (3.9) and (3.10),

A = J2 + 2Jm
(
l2 − llc + l2c

)
+m2 (l − lc)2

(
l2 + l2c

)
−m2l2 (l − lc)2 cos (q1 − q2)2 .

The fourth inner product (associated with the uncontrolled velocity) in Equa-

tion (3.4) is zero in this case. More examples and computational detail about the

coupling can be found in [28, 29, 30].
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3.2 Ankle-Actuated Biped

The two-link, ankle-actuated robot considered in this chapter is illustrated in Fig-

ure 3.1, where the ankle joint is actuated and the hip joint is unactuated. This simple

two-link model is adopted, because it can allow clear insight into some fundamental

aspects of the problem and clarity in the application of the coupling metric in this

thesis. First consider a scalar input-output system

ẋ = f(x) + g(x)u, z = h(x), (3.11)

where x is the state vector, u is the scalar input, and z is the scalar output that is

expected to follow some pre-designed behaviors, such as tracking a given path. This

problem is also known as an “input-to-output” problem, and a standard approach,

feedback linearization, is presented in Chapter 2 for this type of problem. In the

controller design for biped robots, the walking pattern that the biped is desired to

follow is a gait. Note that the biped is a hybrid model and not any random gait works

for the model. Selection of gaits should satisfy periodic walking. Hence, conservation

of energy needs to be considered at touchdown, i.e., the energy loss at impact should

be balanced by the energy input during the swing phase before the impact. Therefore,

only gaits satisfying energy conservation are selected, and then control is designed

correspondingly to realize the gaits.

The work in [119] gives a thorough introduction as to how to control a two-link,

hip-actuated robot. This section presents an analogous development for designing

gaits for an ankle-actuated robot. The two methods are conceptually parallel, but

one important difference is that initial velocities corresponding to candidate stable

walking gaits are found numerically in this thesis.

In the two-link robot model, the legs are symmetric, with masses m1 = m2 = m

and lengths l1 = l2 = l. The location of the CoM for each leg is lc away from the
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TABLE 3.1

TWO-LINK MODELS WITH VARYING PARAMETERS.

Model
Code

m (kg) J (kg ·m2) l (m) lc (m)

Model-0 5 0.6 1 0.8

Model-1a 1 0.12 1 0.8

Model-1b 10 1.2 1 0.8

Model-2a 5 0.14 0.5 0.4

Model-2b 5 1.3 1.5 1.2

Model-3a 5 0.55 1 0.78

Model-3b 5 0.59 1 0.82

ankle, and the moment of inertia w.r.t. the CoM for each leg is J . Consider a nominal

model with m = 5 kg, J = 0.6 kg ·m2, l = 1 m and lc = 0.8 m, and the other models

are obtained by varying parameters of the nominal model along three dimensions,

i.e., leg masses, lengths, and locations of the CoM of the legs, as shown in Table 3.1.

A specific model code is assigned to each model for facilitating further description.

The nominal model is called Model-0. When varying the leg masses (Model-1a,

Model-1b), the other two dimensions are invariant, and the moment of inertia w.r.t.

the CoM in each leg varies proportionally with the mass. When varying the leg

lengths (Model-2a, Model-2b), the leg masses and the relative position of the CoM

in each leg are constant, and the moment of inertia w.r.t. the CoM in each leg is

calculated accordingly. When varying the position of the CoM in each leg (Model-3a,

Model-3b), the other two dimensions are invariant, and the moment of inertia w.r.t.

the CoM in each leg is calculated accordingly.
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Denote the relative hip joint angle as θ1 and the ankle joint angle as θ2. Define

the configuration vector θ = (θ1; θ2), the velocity vector θ̇ = (θ̇1; θ̇2), the state vector

x = (θ1; θ2; θ̇1; θ̇2), and τ is the control input actuated only at the ankle. Thus, the

dynamics of the robot during the swing phase are described by

ẋ =

 θ̇

M−1(θ)[−C(θ, θ̇)θ̇ −G(θ) +B(θ)τ ]

 , (3.12)

where

M(θ) =

M11 M12

M21 M22

 C(θ, θ̇) =

C11 C12

C21 C22


G(θ) =

G1

G2

 B(θ) =

0

1


M11 =J +m(l − lc)2

M12 =− J −m(l − lc)2 +ml cos θ1(l − lc)

M21 =M12

M22 =− 2ml(l − lc) cos θ1 + 2ml2 + 2ml2c − 2mllc + 2J

C11 =0

C12 =−ml sin θ1(l − lc)θ̇2

C21 =−ml sin θ1(l − lc)(θ̇1 − θ̇2)

C22 =ml sin θ1(l − lc)θ̇1

G1 =mg(l − lc) sin(θ1 − θ2)

G2 =mg(lc − l) sin(θ1 − θ2)−mg(l + lc) sin θ2.

Define an output function

y = θ′2(θ1)− θ2 = h(θ), (3.13)
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where θ′2 is a gait function that relates the unactuated hip angle to the desired

actuated ankle angle. The control goal is to drive the output function to zero, which

is to make the walking pattern follow a pre-designed gait θ′2.

Observe that the output function is only a function of θ and not θ̇. Since the

control input τ is related to the second derivative of the configuration variables in

Equation (3.12), the first derivative of the output does not directly depend on the

input. The first and second derivatives of the output function w.r.t. time,

dy

dt
=
∂h

∂x
ẋ =

∂h

∂θ
θ̇ = Lfh(θ, θ̇),

d2y

dt2
=
∂(dy/dt)

∂x
ẋ

=

[
∂
∂θ

(∂h
∂θ
θ̇) ∂h

∂θ̇

]
 θ̇

M−1(θ)[−C(θ, θ̇)θ̇ −G(θ)]

+

 0

M−1B

 τ


=

[
∂
∂θ

(∂h
∂θ
θ̇) ∂h

∂θ̇

] θ̇

M−1(θ)[−C(θ, θ̇)θ̇ −G(θ)]

+
∂h

∂θ
M−1Bτ

= L2
fh(θ, θ̇) + LgLfh(θ)τ,

show that the relative degree of the system is two.

Therefore, it is required that the swing phase dynamics evolve on (or converge to

when there exists some initial error or disturbance) an invariant set,

Z := {x | h(x) = 0, Lfh(x) = 0} , (3.14)

which is the zero dynamics manifold. The feedback control that can render the swing

phase dynamics invariant is

τ = τ ∗ + v = − (LgLfh (x))−1 L2
fh (x)︸ ︷︷ ︸

τ∗

+(−kpy − kdẏ︸ ︷︷ ︸
v

), (3.15)
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where τ ∗ is used to cancel the nonlinear dynamics, and v is a PD-controller to make

the system stay on the zero dynamics manifold. The swing phase zero dynamics for

the system under the invariant set Z is

fzero(z) =

 θ̇

M−1(θ)[−C(θ, θ̇)θ̇ −G(θ) +B(θ)τ ∗]

 . (3.16)

As the selection of gaits should satisfy periodic walking, the biped is reset to the

same initial configuration just after impact for each step. Also, the candidate gaits

should conserve energy, which requires that the energy loss at impact be compen-

sated by the control inputs during the swing phase. From the perspective of system

dynamics, the dynamics of the robot just after impact should reset to the same as the

initial dynamics during swing phase. Therefore, the dynamics for a complete model

are 
ẋ = fcl(x) x− ∈ T

x+ = ∆(x−) x− /∈ T ,

(3.17)

where the set T includes all the points just before the impact, i.e., when the swing

foot just touches the ground, the function fcl is the system dynamics with feedback

control added during the swing phase, and the function ∆ is a reset map for the states

at touchdown. Based on the hypothesis that there is no slipping and no rebound after

impact, there is no instantaneous change in the configuration of the robot. However,

the velocity resetting is configuration-based, which can be derived by considering

the momentum conservation at impact [119, p. 57]. We use a fourth-order Bézier

polynomial to design the gait. A Bézier curve is defined by a set of control points.

The first and last control points are the end points of the curve, and the second and

second-to-last points help define the slopes at the two end points of the curve. A
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fourth-order Bézier polynomial is defined by five control points {ak},

θ′2(θ1) =
4∑

k=0

ak
4!

k!(4− k)!

(
θ1 − θ+1
θ−1 − θ+1

)k (
1− θ1 − θ+1

θ−1 − θ+1

)4−k

, (3.18)

where a0 and a4 are fixed by the end conditions of the gaits, and the jump condition

at impact gives a relationship between a1 and a3. Therefore, only two parameters

are free.

When the two parameters a2 and a3 are given, the gait curve is fixed. Thus,

there is a unique initial condition, i.e., a set of initial configuration and velocities,

that corresponds to the gait. It is very difficult to directly solve for the initial condi-

tion due to the high-dimensional, nonlinear and hybrid complexity. For hip-actuated

biped robots, a coordinate transformation can convert the zero dynamics in Equa-

tion (3.16) to a new form, and the initial condition can be determined analytically,

which unfortunately does not apply for ankle actuation. For ankle-actuated robots,

a direct numerical computation method is proposed in this thesis.

The approximation of instantaneous acceleration given by aδs = (v22 − v21) /2 is

used to solve for the initial condition for a desired gait, where a is the angular acceler-

ation of the hip joint during walking, which can be computed from Equation (3.16), v1

(resp. v2) is the angular velocity of the hip joint before (resp. after) some instant, and

δs is a very small angular displacement during that instant. Therefore, the angular

velocity can be derived via integration over the entire gait, and the initial condition

can be obtained by enforcing the periodic constraint.

Gaits on a 101× 101 grid for -2 < a2 < 3 and -3 < a3 < 2 are evaluated. Using a

denser grid such as 201× 201 is more computationally expensive, while a 101× 101

grid is enough to capture the shape of all candidate gaits. The regions of all candidate

ankle-actuated gaits defined in this manner for Model-0 are displayed in Figure 3.2.

Many of the candidate gaits in Figure 3.2 have i) negative contact forces between the
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Figure 3.2. Candidate gait region for Model-0. Each dot represents a gait.
The circled dots are feasible gaits.

foot and ground for a portion of the gait cycle and ii) ankle torques that are very

large in magnitude and would require very large feet.

We first remove the gaits that require negative contact forces, which gives us the

feasible gaits. Secondly, to ensure no foot rotation, the required foot size is also

studied. In the two-link model, the mass is concentrated in the two legs. A free-body

diagram for the model is shown in Figure 3.3. Assume that the mass of each foot is

zero, and the foot is flat enough that the line of action of the resultant force applied

by the stance leg on the joint O intersects the ground inside the foot print [52]. In

this case, to ensure no foot rotation, the resultant force and torque on the foot must

be zero. Therefore,

−FT + Ff = 0, −FN +RN = 0, OP ×RN − τ = 0. (3.19)

Since the torque τ is the control input and the forces FN and FT are the constraint

forces that can be computed based on the dynamics of the model, the resultant

support force RN and the friction Ff between the foot and the ground can be derived
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Figure 3.3. Free-body diagram for the ankle-actuated biped. P is the ZMP
where the vertical reaction force RN intersects the ground. Certain foot

size is required to ensure no foot rotation.

from Equation (3.19). Note that P in Figure 3.3 is the zero moment point (ZMP),

where the vertical reaction force RN intersects the ground. The ZMP is not fixed

during the swing phase. Thus, the distances between the zero moment point P and

the ankle joint position O at all instants during one walking step should be considered.

To simplify the analysis, the sum of the maximum distances OP that lie on the two

sides of the stance foot is taken as the safe foot size, for the ankle torque can be

applied in both directions. The safe foot sizes and the required friction ratios for

all the feasible gaits in Figure 3.3 are illustrated in Figure 3.5. It shows that the

maximum foot size can go as large as 1 km, while the minimum is less than, but on

the order of 1 m, which demonstrates that pure ankle actuation for biped robots is

difficult to realize.

Within the set of feasible gaits, the only ones with foot sizes less than 10 m are in

the circled region in Figure 3.2. After zooming in around the circled dots, the regions

containing a large number of feasible gaits are shown in Figures 3.4. It was also found

that the feasible gait regions for the models with varying masses or leg lengths (see

Figure B.2 in Appendix B) have shapes identical to that of the nominal model, but

the feasible gait regions for the models with varying positions of the CoM of the legs
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have different sizes. This implies that the feasible gaits, i.e., the relationships between

actuated ankle joint angle and unactuated hip joint angle in locomotion generated in

this manner, do not depend on the leg masses or lengths but do depend on the

locations of the CoM of the legs for the robot.

Figure 3.5 shows the relationships among foot size, friction coefficient and cost

of transport2 (CoT) for all the feasible gaits in Figures 3.4. Note that the foot size

can go as large as 1 km for some gaits, which is because the ankle torques required

to actuate these gaits are very large, as illustrated in Figure 3.6. The same trends

were also observed among the other six models (see Appendix B). For Model-0, note

that the median of maximum positive ankle torques (normalized by mass) for all

feasible gaits is 21.8 Nm/kg, and the median of maximum negative ankle torques is

−25.0 Nm/kg. In contrast, the average maximum positive ankle torque employed in

human walking is about 1.7 Nm/kg, and the average maximum negative ankle torque

is about −0.1 Nm/kg [5], which enable humans to have relatively small foot size. The

2The cost of transport quantifies the energy efficiency of walking.
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Figure 3.5. Required foot size and friction for all feasible gaits for Model-0.
Color represents the magnitude of CoT of a gait.

significantly larger ankle torque for the biped model is likely due to the absence of hip

actuation and foot articulation in the model, as both play important roles in lowering

the energetic cost of locomotion [63]. This work considers this extreme case to better

understand how ankle actuation is related to robustness, which could ultimately be

used to supplement hip actuation for more effective real-world bipeds.

Moreover, the robot requires adequate friction so that the stance foot does not

slip. The friction coefficient is defined by a ratio between the ground reaction forces

in the tangent and normal directions. There exist strong positive correlations among

foot size, friction coefficient and CoT for a gait, which can be interpreted as gaits

with larger CoT require larger foot sizes and larger friction coefficients to maintain

stability. This further implies that gaits with larger CoT should be less robust.

Figures 3.7 and 3.8 illustrate the relationship between walking speed and CoT for

all the generated feasible gaits. The plot shapes for all models are similar, with four

boundaries that define the region, as illustrated by the four red curves A, B, C and

D for Model-0 in Figure 3.7. The boundaries A, B and C are due to the fact that no

initial conditions exist for the Bézier polynomials defined beyond the region, while
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gaits for Model-0.

the boundary D is generated due to the cutoff between the feasible and infeasible

gait regions. Overall, the relationship between speed and CoT in Figures 3.7 and 3.8

is a V-shape. For example, the optimal walking speed for the Model-0 is around 0.31

m/s, which is marked with red dashed line in Figure 3.7.

3.3 Using Coupling Metric for Biped Control and Design

In section 3.1 the computation of coupling between the actuated ankle joint and

unactuated hip joint along a trajectory is given. Furthermore, coupling strength

is defined as the infinity norm of the sum of coupling terms during a single step.

Therefore, the unit for the coupling strength is m
√

kg/s2. The motivation is that

the coupling terms are related to the dynamics of the system, and thus, it is natural

to make connections between the coupling strength and the robustness of a gait.

Moreover, the infinity norm of coupling is taken at the instant with the maximum

coupling throughout the gait. Other types of norms to define coupling strength

have also been tested. For example, the following results also hold for definitions of
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Figure 3.8. Relationship between speed and CoT for various models.
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coupling strength with the 1-norm.

One way to measure the robustness of a gait for a biped walking robot is to

determine the region of attraction (RoA) for initial conditions at the beginning of

a gait, which is equivalent to adding a disturbance at the very beginning of a step.

Focusing on the start of a step emphasizes the state of the robot at touchdown of a

foot, which is critical to stable walking. This addresses how the biped can respond

to errors in the desired state at touchdown during the next step to keep walking,

and a larger RoA for initial conditions at the beginning of a step generally indicates

a more robust gait. To initiate walking for the two-link model, a set of parameters

including the initial configuration and initial velocities needs to be assigned. The

initial configuration of a two-link model is uniquely determined for a predetermined

step length, while the initial velocities depend on the dynamic characteristics of

different gaits. As the ankle joint is actuated and no torque limit is set for the biped

walking simulation, it is reasonable to assume that the initial velocity of the ankle

joint has a very large RoA for different gaits. In contrast, the hip joint is unactuated,

thus affected by both the coupling and gravity terms. Therefore, the robustness of

different simulated gaits can be compared based on the RoA of initial velocity for the

hip joint.

In the subsequent analysis, only gaits with foot size less than 5 m are consid-

ered. The models with different parameters are compared, with consistent conclu-

sions reached across all seven models. Therefore, the following results should hold in

general, regardless of the masses, leg lengths and positions of the CoM of the legs.

3.3.1 Relationship between Coupling Strength and Robustness

With the family of feasible ankle-actuated gaits, robustness of the gaits is deter-

mined by varying the velocity disturbance added to the hip joint at the beginning of

a step. This disturbance is directly aligned with the unactuated degree of freedom.
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This was chosen because components of a disturbance aligned with the inputs can

be directly rejected by the actuated degree of freedom. In higher degree-of-freedom

biped models with more degrees of unactuation, multiple components of the distur-

bance, or equivalently both the magnitude as well as the direction, would have to

be considered. As the robot is regarded as falling if the swing leg swings backward

and touches the ground, the maximum rejectable deceleration disturbance is mostly

determined by the initial velocity of the hip joint. Thus, the maximum accelera-

tion disturbance that the robot can successfully reject is adopted as the measure of

robustness for a gait.

In the disturbance rejection simulations for all models, the magnitude of velocity

disturbance was increased by 0.05 rad/s per iteration until the initial hip joint velocity

reached 6 rad/s. Since undisturbed walking is periodic, the disturbance can be added

during the first step. The robot is considered to be able to reject the disturbance if

it can complete 50 steps without falling after the disturbance, as was proven to be

a useful metric in prior literature [42]. Computing the coupling strength over the
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first step demonstrates a quantifiable relationship between the coupling strength and

robustness of the gait.

Figure 3.9 illustrates the relationship between the coupling strength and robust-

ness for the nominal ankle-actuated model (928 feasible gaits with a foot size of

smaller than 5 m included). The top plot shows that there is a clear negative cor-

relation between the magnitude of coupling strength and the maximum rejectable

acceleration disturbance. This relationship still holds even if the small group of gaits

circled in Figure 3.4 are removed in the analysis. The bottom plot confirms this point,

showing that the gaits with very small coupling strength under zero disturbance ex-

hibit an increase in coupling under maximum rejectable acceleration disturbance. In

contrast, the gaits with very large coupling strength under zero disturbance show

nearly no increase in coupling when disturbed. In fact, there is a limit of maximum

coupling strength for all feasible gaits. Beyond that, either the stance foot will leave

the ground or the robot will fall down, which makes the gait infeasible. With knowl-

edge of the coupling information, different gaits can be compared to select a robust

one since smaller coupling strength tends to indicate better robustness. The same

trend can also be observed among the other six models with varying parameters (see

Figure B.5 in Appendix B).

In order to check whether the relationship between the coupling strength and

robustness holds along the entire gait, as opposed to only at the very beginning,

disturbances were added at five different instants. To complete one step, the hip

joint θ1 swings from −π/7 to π/7. The five disturbed instants are thus defined when

the hip angles are −π/7, −π/14, 0, π/14 and π/7. The results show that there is

negative correlation between the magnitude of coupling strength and the maximum

rejectable acceleration disturbance along the entire gait for the nominal model and

the models with varying parameters.

Furthermore, another interesting question concerns whether there are strong cor-
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Figure 3.10. Pearson correlation of RoA among different disturbed instants
for Model-0.

relations among the maximum rejectable acceleration disturbances at different in-

stants along the gait. Figure 3.10 for Model-0 shows that the minimum Pearson

correlation coefficient for all pairs is 0.65 and that for most pairs, the coefficient is

greater than 0.8, which suggest strong correlations among the maximum rejectable

acceleration disturbances at different instants along a gait. Therefore, the robustness,

as measured by RoA, is a feature of a gait and should be consistent along the gait.

Hence, the relationship between the mechanical coupling strength and RoA at some

instant can be extended to the entire gait. The same quantitative results also hold

for the models with varying parameters (see Figure B.6 in Appendix B).

3.3.2 Relationships among Coupling Strength, Gait Speed and CoT

The coupling strength is also correlated with many characteristics of a gait, such

as walking speed and CoT. Figure 3.11 shows significant positive correlation between

the coupling strength and CoT of gaits for Model-0. Note that the coupling strength

is a mechanical coupling metric and strongly related with the joint velocities of the

robot. Hence, gaits with larger CoT generally imply larger joint velocities and thus
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Figure 3.13. Relationship between speed and CoT for Model-0. Each dot
represents a gait. Color represents the magnitude of RoA of the gait.

larger coupling strength. Since a gait with larger coupling strength tends to be less

robust, a gait with larger CoT, i.e., a less-energetically-efficient gait, tends to be less

robust. Figure 3.12 provides the same conclusion for the other models with varying

parameters. As for the coupling strength and walking speed of a gait, however, there

is no simple monotonic relationship.

Figure 3.13 shows the correlations among the walking speed, CoT and robustness

of the gaits for Model-0. The yellow dots that represent the more robust gaits are

concentrated at the bottom, while the blue dots that represent less robust gaits

gather near the top, which can be interpreted as for gaits with the same walking

speed, the more energetically efficient ones are also more robust in general. This is

consistent with the aforementioned conclusion that an energetically efficient gait has

lower coupling strength and should be more robust. Thus, it highlights the value of

gait optimization in robot design and control. Note that gaits with large coupling

are not robust, and it is also necessary to compare the gaits with small coupling in

order to select a robust one. These results can also be obtained from the models with

varying parameters, as shown in Figure 3.14.
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Figure 3.14. Relationship between speed and CoT for various models.
Color bar represents the magnitude of RoA.

3.3.3 Contrast of Mechanical Coupling Metric for Hip Actuation

The mechanical coupling metric for hip actuation is briefly studied as a contrast.

Before using the coupling metric for a hip-actuated model, a number of hip-actuated

gaits need to be generated. Therefore, the same two-link nominal model for ankle

actuation (Model-0) is utilized, except that only the hip joint is actuated. The HZD-

based controller is adopted. Interested readers can refer to [119] for details about

how to generate hip-actuated gaits. Gaits on a 601 × 301 grid for 0 < a2 < 6

and 0 < a3 < 3 were evaluated. All hip-actuated candidate gaits are displayed in

Figure 3.15.

For hip actuation, there is no torque at the ankle. Thus, it does not require a

lengthy foot to prevent the stance foot from rolling over. The two constraints to

check the feasibility for the hip-actuated gaits are 1) the non-negative contact forces

between the foot and ground, and 2) the friction coefficient of contact between the

stance foot and the ground lies in a reasonable range, which is taken as no greater

than 0.6 in this chapter. With these two constraints, the feasible gaits are marked
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Figure 3.15. Red dashed-line circles the candidate gait region for Model-0
(hip actuation). Green area represents the feasible hip-actuated gaits.

by green dots in Figure 3.15, which is a subset of the candidate gaits.

The input torque for hip actuation is defined by F = τ [1;−1]. Following the

computation process of Equations (3.1) through (3.6), the G-normalized controlled

direction and uncontrolled direction for the hip-actuated model are

Y1 =

 J+m(l−lc)2+ml(l−lc) cos(q1−q2)√
2AB

−J+m(l2+l2c)+ml(l−lc) cos(q1−q2)√
2AB

 (3.20)

and

Y⊥ =

 1√
2B

1√
2B

 , (3.21)
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the controlled and uncontrolled velocity magnitudes are

w =

√
A

2B
(q̇1 − q̇2)

s =
J +m(l2 + l2c) +ml(l − lc) cos(q1 − q2)√

2B
q̇1

+
J +m(l − lc)2 +ml(l − lc) cos(q1 − q2)√

2B
q̇2,

(3.22)

and the three bilinear forms are

WW 11 (Y1, Y1) = 0, WS1
1 (Y1) = 0, WS1

2 (Y1) = −Ml(l − lc) sin(q1 − q2)√
2AB

, (3.23)

where in Equations (3.20), (3.21), (3.22) and (3.23)

A = J2 + 2Jm
(
l2 − llc + l2c

)
+m2 (l − lc)2

(
l2 + l2c

)
−m2l2 (l − lc)2 cos (q1 − q2)2 ,

B = J +M(l2 − llc + l2c) +ml(l − lc) cos(q1 − q2).

The fourth inner product (associated with the uncontrolled velocity) in Equation (3.4)

is also zero for the hip-actuated model.

With Equations (3.20) through (3.23), the coupling terms for each gait can be

computed. Figure 3.16 shows the relationships among the coupling strength, walking

speed and CoT for the hip-actuated gaits. There is significant positive correlation

between the CoT and coupling strength for the hip-actuated biped, but the corre-

lation between the coupling strength and the walking speed of a gait is weak, all of

which are consistent with the results for the ankle-actuated model.

To compare ankle- and hip-actuated gaits, note that the speed range for the

feasible hip-actuated gaits is between 0.15 m/s and 0.55 m/s, shown in Figure 3.16.

With the same nominal model, the speed range for all ankle-actuated feasible gaits is

a bit narrower, between 0.15 m/s and 0.4 m/s, as shown in Figure 3.13. Note that in
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Figure 3.16. Each dot represents a feasible hip-actuated gait. Color of the
dot represents the magnitude of coupling strength of the gait.

Figures 3.16 and 3.11, the median CoT for all feasible hip-actuated gaits is 0.07, which

is much smaller than that for the ankle-actuated gaits, 2.70. The difference is as large

as two orders of magnitude. Therefore, pure hip torque actuation should be more

energetically efficient than pure ankle torque actuation for two-link biped locomotion.

However, the median RoA for all feasible ankle-actuated gaits is 1.20 rad/s, larger

than that for hip actuation, 0.045 rad/s, which suggests that ankle-actuation should

be more robust.

Disturbance rejection simulations were also completed for all 4096 feasible hip-

actuated gaits. The velocity disturbance was added at the unactuated ankle joint

at the very beginning of walking, and the magnitude of disturbance was increased

by 0.005 rad/s per iteration, until the initial ankle joint velocity reaches 1 rad/s.

Figure 3.17 shows the relationship between the RoA and coupling strength for the

hip-actuated biped, which is analogous to what was obtained for the ankle-actuated

model. For the gaits with larger coupling, the RoA is smaller, which indicates that the

gait with larger coupling strength tends to be less robust. Therefore, the search for

robust gaits should be focused on gaits with small coupling, regardless of the actuation
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Figure 3.17. Each dot represents a feasible hip-actuated gaits. Gaits with
small coupling strength tend to have large RoA.

method. The work in [47, 46] also used coupling to study the control of hip-actuated

underactuated biped robots. Specifically, it indicated that the dynamic coupling

can be used as an indicator of gait robustness for the bipeds with simulation on a

two-link hip actuated model [46], and, there is positive correlation between coupling

and robustness. Note that the dynamic coupling defined in [46] is different from the

coupling strength defined in this dissertation. For the same two-link hip-actuated

model, [46] considered the term swWS1
2 as instantaneous coupling throughout the

gait, while this dissertation uses the infinity norm of −swWS1
2(t) (note the negative

sign) along a gait as coupling strength for the gait. Therefore, in some sense the

results in [46] are consistent with the results in this chapter, i.e., there is negative

correlation between coupling strength and gait robustness for underactuated bipeds.

3.4 Conclusions

This chapter studies the relationship between the nonlinear mechanical coupling

metric and the robustness of a gait for an ankle-actuated model and extends the
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results to models with varying parameters, including changing the masses, leg lengths

and positions of the CoM of the legs [28, 29, 30, 24]. The mechanical coupling metric

for a hip-actuated robot is also discussed.

The most important contribution of this chapter is that the coupling strength is

strongly correlated with the robustness of a gait, regardless of the model parameters

or actuation method. There is a negative correlation between coupling strength and

the size of the region of attraction of a gait. Hence, more robust gaits tend to have

smaller coupling. This is useful for roboticists because the search for good gaits can

be focused on gaits with smaller coupling.

Furthermore, the gait with larger CoT has larger coupling strength, and thus,

the energetically efficient gait should be more robust, which is also confirmed by the

disturbance rejection test. Moreover, this chapter also presents a numerical method

to solve for initial conditions for ankle-actuated gaits. The limits of using only the

ankle torque to actuate a two-link biped are formally studied, and the requirements of

large torque, foot size and friction coefficient to maintain stability make this actuation

method difficult to realize. Compared with actuating the same biped by using only

hip torque, ankle actuation is less energetically efficient but tends to be more robust.

Disturbance rejection simulations were also completed at multiple instants during a

gait, and the strong correlations among the regions of attraction at multiple instants

validate the RoA at the beginning of a gait as a feature of robustness for the entire

gait.

This chapter also compares gait characteristics based on different models. A

two-link biped model with longer legs can walk faster; in contrast, the mass of the

model has nearly no influence on the walking speed as long as enough energy input

is provided. Moreover, lowering the CoM of the model can give more robustness to

the biped. These results are also useful in guiding the design of biped robots.
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CHAPTER 4

UNDERACTUATED BIPEDAL WALKING ON SLIPPERY SURFACES

Most current bipedal robots were modeled with an assumption that there is no

slip between the stance foot and ground. This chapter relaxes that assumption and

undertakes a comprehensive study of the compass gait biped on slippery ground.

Based on the model, it further fills the gap in literature by providing a way to

characterize robust gaits on slippery ground and demonstrating relationships among

gait features and robustness in slippery scenarios. Section 4.1 presents in detail

a general biped model that allows for foot slipping. To study bipedal walking on

slippery surfaces, robust gaits need to be characterized and defined, which is the

focus in Section 4.2. Sections 4.3 presents the main findings in this chapter, which

reveal the relationship among gait features and robustness and provide insights into

the design of robust gaits that can adapt to slippery surfaces.

4.1 Slipping Model for An Underactuated Biped

The hip-actuated compass gait biped is illustrated in Figure 4.1. Denote the hip

and ankle joint angles as q1 and q2, respectively. The position of the stance foot is

(xst, yst), and u is a torque applied at the hip. In simulation, the adopted model has

symmetric legs, with mass m = 5 kg and length l = 1 m for each. The location of the

CoM of each leg is lc = 0.8 m away from the foot, and the moment of inertia w.r.t.

the CoM for each leg is J = 0.6 kg ·m2. A general model consists of two modes:
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Figure 4.1. Top: Illustration of a nominal hip-actuated compass gait biped.
Bottom: A general bipedal walking system consists of two modes, sticky
mode (left) and slip mode (right) [71], and vst represents the stance foot

velocity.

sticky mode and slip mode.1 Thus, the system H [71] can be expressed by

H = {Q,X, f, Init, E,G,R}, (4.1)

where

• Q = {0, S}, where 0 represents the sticky mode, and S represents the slip mode;

• X = (q1, q2, xst, yst, q̇1, q̇2, ẋst, ẏst) ∈ R8, represents the state space;

• f : Q×X → R8 assigns to each mode in Q an analytical vector field;

• Init ⊆ Q×X is a set of initial states;

• E = {e0→s, es→0, e
i
0→s, e

i
s→0, e

i
0→0, e

i
s→s} ⊆ Q×Q is a set of discrete transitions;

1Sticky mode means that the relative velocity between the surfaces of contact of the stance foot
and ground is zero.
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• G = {G(e) : e ∈ E} is a set of guard conditions referring to the switching
surfaces between different modes; and,

• R = {R(e) : e ∈ E} is a set of reset maps.

A discrete transition event with a superscript i means that the transition happens

at impact [71], which is also illustrated with a dashed line in Figure 4.1. The other

events occur during swing phases, such as e0→s triggers when the static friction force

between the ground and stance foot cannot maintain sticky walking, and es→0 triggers

when the stance foot velocity decreases from non-zero to zero.

4.1.1 Swing Dynamics at Each Mode

Compared with [48] that used excessive coordinates to model a bipedal walking

system with foot slipping, this section adopts minimal coordinates to construct the

model. Only four states X0 = {q1; q2; q̇1; q̇2} are used to model the dynamics in the

sticky mode, and only six states Xs = {q1; q2;xst; q̇1; q̇2; ẋst} are used for the slip

mode. The advantage of using minimal coordinates is that the dynamics at each

mode are concise and easy to understand. The computation is relatively simple.

The dynamics for a swing phase in the sticky mode are

ẋ0 =

 q̇0

D−10 (q0)[−C0(q0, q̇0)q̇0 −G0(q0) +B0(q0)u]

 = f0(x0) + g0(x0)u, (4.2)

where q0 = (q1; q2) is the configuration, x0 = (q1; q2; q̇1; q̇2) ∈ X0 is the state vector,

u is the control input, D0 is the inertia matrix, C0 is the Coriolis matrix, G0 is the

gravity vector, and B0 is the input direction. The dynamics for a swing phase in the
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slip mode are

ẋs =

 q̇s

D−1s (qs)[−Cs(qs, q̇s)q̇s −Gs(qs) +Bs(qs)u+Bf (qs)Ff ]


= fs(xs, ẋs) + gs(xs)u,

(4.3)

where qs = (q1; q2;xst) is the configuration, xs = (q1; q2;xst; q̇1; q̇2; ẋst) ∈ Xs is the

state vector, u is the control input, Ff is the friction force, Ds, Cs, Gs and Bs are

the corresponding matrices or vectors in slip mode, and Bf is the input direction for

Ff . Detailed expressions for the matrices and vectors in Equations (4.2) and (4.3)

are presented in Appendix C. Also note that X0 and Xs are both subsets of the total

state space X, with the other states being constants during the modes.

In the slip mode, a simple Coulomb model with stiction is used [91, 120, 73]. The

static coefficient of friction µs is higher than the kinetic one µk. Thus, when a slip

occurs, the Coulomb friction force Ff can be computed by Ff = µkFn, in which the

normal force Fn is computed by

Fn =m
(
2g − (l + lc) cos q2q̇

2
2 + (l − lc) cos(q1 − q2)(q̇1 − q̇2)2

)
−m ((l − lc) sin(q1 − q2) + (l + lc) sin q2) q̈2 +m(l − lc) sin(q1 − q2)q̈1.

The formulation for Fn is essentially an expansion of the acceleration for the CoM of

the biped in vertical direction. Note that Fn is a function of qs, q̇s, q̈s, which is why

fs in Equation (4.3) is a function of xs, ẋs. Specifically, Fn is linear in the angular

acceleration q̈s. This allows isolation of ẋs onto one side for Equation (4.3), such that

the bottom half of ẋs = (q̇1; q̇2; ẋst; q̈1; q̈2; ẍst) = (q̇s; q̈s) can be converted to the form

M(qs)q̈s = N(qs, q̇s). (4.4)
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The determinant of M(qs) ∈ R3×3 is

∆ =1± µk(m(l − lc) sin(q1 − q2)Ds13 −m ((l − lc) sin (q1 − q2) + (l + lc) sin q2)Ds23),

(4.5)

where Ds13 and Ds23 denote the (1,3) and (2,3) elements of the matrix D−1s (qs), re-

spectively, and the sign ± depends on the direction of slipping velocity ẋst. Numerical

computation shows that µk ≤ 0.6 guarantees the determinant ∆ cannot be zero for

all two-link configurations and all models considered in this chapter. Even when

µk > 0.6, only some specific configurations can make ∆ = 0, which does not occur

in the following simulations. Therefore, standard numerical solvers can be used to

compute a numerical solution to Equation (4.3).

4.1.2 Impact Map

The model dynamics at impact are

Deq̈e + Ceq̇e +Ge = Beu︸︷︷︸
control

+ JTF︸︷︷︸
contact forces

+ δFext︸ ︷︷ ︸
impact

, (4.6)

where qe = (q1; q2;xst; yst) is an extended configuration state, De ∈ R4×4 is the

extended inertia matrix, Ce ∈ R4×4 is the Coriolis matrix, Ge ∈ R4 is the gravity

vector, Be is the input direction, J ∈ R2×4 is the Jacobian matrix, F = (Ff ;Fn)

is the contact force applied at the stance foot, and δFext is the generalized impulse

force applied at the swing foot when it impacts the ground. The derivation in [119]

assumes that the contact forces are zero at impact. However, integrating both sides

of Equation (4.6) over a very small amount of time δt yields,

De(q
+
e )q̇+e −De(q

−
e )q̇−e = Fext, (4.7)
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where q+e and q̇+e are the configuration and velocity just after impact, q−e and q̇−e

are the configuration and velocity just before impact, and Fext ∈ R4 is a result of

integrating the impulse force δFext over the impact duration δt. Refer to Appendix C

for details about the extended inertia matrix De. Equation (4.7) is also interpretable

as an expression of conservation of momentum.

Because slipping may occur along with the impact, it makes the configuration-

based impact map in [119] not applicable. To obtain an impact map that allows

for the possibility of slipping at impact, define the position of the swing foot p2 =

(xtd; ytd) = p2(qe), and the impulse at touch down as F2 = (F t
2;F n

2 ). Thus, the

generalized impulse is

Fext = [
∂

∂qe
p2(qe)]

T

F t
2

F n
2

 , E2(q
−
e )TF2, (4.8)

where E2(q
−
e ) ∈ R2×4 is the Jacobian matrix, which projects from joint velocities to

end-effector velocities, and the transpose E2(q
−
e )T ∈ R4×2 thus projects end-effector

forces to joint torques.

Note that the configuration at impact remains unchanged, and thus q+e = q−e .

Substituting Equation (4.8) into (4.7), we have four equations. Meanwhile we have

six unknowns, which are q̇+e ∈ R4 and F2 ∈ R2. The other two equations come from

the constraints of configurations or impulse forces at impact.

1. When no slip happens at the impact, the swing foot sticks onto the ground
with neither slip nor rebound,

E2(q
−
e )q̇+e = 02×1,

so in matrix form,[
De(q

+
e ) −E2(q

−
e )T

E2(q
−
e ) 02×2

] [
q̇+e
F2

]
=

[
De(q

−
e )q̇−e

02×1

]
. (4.9)
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2. When slipping occurs at the impact and there is no rebound,

ẏ+td =
∂ytd
∂qe

q̇+e = 0, |F t
2| = µkinetic|F n

2 |,

so in matrix form,De(q
+
e ) −E2(q

−
e )T

∂ytd
∂qe

01×2

01×4 [±1, µ]

 q̇+eF t
2

F n
2

 =

De(q
−
e )q̇−e
0
0

 . (4.10)

4.2 Quantify Robust Gaits on Slippery Surfaces

4.2.1 Control of An Underactuated Biped Robot

A Hybrid Zero Dynamics (HZD)-based controller [119] is adopted to control the

hip-actuated biped robot in Figure 4.1. The idea is to actuate the hip joint q1 in order

to make it follow some desired trajectory q′1(q2), which is a function of q2 defined by

a fourth-order Bézier polynomial. The trajectory q′1(q2) is also called a gait. The

gait design and control method are similar to those of the ankle-actuated biped in

Chapter 3, and we will give a brief review in this section. For a no-slip situation, the

output function is defined as

y = q′1(q2)− q1 = h(q0), (4.11)

where q2 is the ankle joint angle, q′1 is the desired hip joint angle, q1 is the actual

(measured) hip joint angle, and q0 = (q1; q2). The first and second derivatives of the

output function w.r.t. time are (note that y = h(q0) is independent of q̇0)

dy

dt
=
∂h

∂x
ẋ =

∂h

∂q0
q̇0 = Lf0h(q0, q̇0),

d2y

dt2
=
∂(dy/dt)

∂x
ẋ = Lf0+g0u (Lf0h(q0, q̇0)) = L2

f0
h(q0, q̇0) + Lg0Lf0h(q0)u,

(4.12)

which shows that the relative degree of the input-output system is two. In Equa-

tion (4.12), f0 and g0 are the vector fields in Equation (4.2), Lf0h is the Lie derivative
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of the function h w.r.t. f0, L
2
f0
h is the second order of Lie derivative of h w.r.t. f0,

and Lg0Lf0h = Lg0(Lf0h) is the Lie derivative of Lf0h w.r.t. g0.

Recall that the control objective is to maintain the swing phase dynamics of the

system on an invariant set

Z := {(q0, q̇0) | h(q0) = 0, Lf0h(q0, q̇0) = 0}, (4.13)

and a feedback controller that can render the swing phase dynamics invariant is

u = u∗ + v = − (Lg0Lf0h (x))−1 L2
f0
h (x)︸ ︷︷ ︸

u∗

+(−kpy − kdẏ︸ ︷︷ ︸
v

), (4.14)

where u∗ is used to cancel the nonlinear dynamics, and v is a PD-controller to make

the system stay on (or converge to) the zero dynamics manifold.

With a properly designed gait, the HZD method uses input-output feedback lin-

earization to achieve hybrid invariance (periodicity) and analytically proven stability

despite periodic leg impacts and support changes. It established a powerful control

framework that has been applied to many underactuated bipeds [31, 118, 123, 19, 56].

The key challenge in using the HZD method is to find a proper gait, and trajectory

optimization provides an automatable tool for this issue [56].

The same controller in Equation (4.14) is also used for the situation when slip

happens. In other words, the robot is not aware when a slip happens and keeps

using the same controller, trying to actuate the hip joint to follow the specified gait

function. Note that the same control gains are used for all gaits, and thus, the ability

for the biped to avoid slipping and slip-induced falling essentially depends on gait

features.

A Bézier curve is used to design the gait function q′1(q2). Figure 4.2 shows an

example of a fourth-order Bézier curve. The curve is defined by a set of control
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Figure 4.2. A fourth-order Bézier curve defined by five control points, a0
through a4.

points, a0 through a4, which correspond to the y-axis values. The first and last

control points are the end points of the curve, and the second and second-to-last

points help define the slopes at the two end points of the curve. Thus, the gait is

defined by

q′1(q2) =
4∑

k=0

ak
4!

k!(4− k)!

(
q2 − q+2
q−2 − q+2

)k (
1− q2 − q+2

q−2 − q+2

)4−k

, (4.15)

where q−2 and q+2 are the ankle joint angles just before and after touch down, re-

spectively, a0 and a4 are fixed by the two end conditions of the gaits, and the jump

condition at impact gives a relationship between a1 and a3. Therefore, only the two

parameters a2 and a3 are free to define the gait. We will show subsequently that a

robust gait design has features that have a simple relationship with these parameters.

For the study in Section 4.2, a fixed step length of 0.445 m is adopted to design

the gaits, and thus, the gait curve starts at (−π/14,−π/7) and ends at (π/14, π/7),

which requires a0 = −π/7 and a4 = π/7. The same model parameters were also

adopted in [119]. Note that the ratio of human step length to height is about 0.4
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Figure 4.3. The colored region (yellow and green) represents all the feasible
gaits. The green region represents the gaits with a required coefficient of

static friction µs ≤ 1 to prevent a slip.

[101]. Furthermore, if a3 is given, a1 can be calculated by using the impact map, and

a2 is also a free parameter.

To find all the proper gaits, gaits on a 601 × 501 grid for 0 < a2 < 6 and

−2 < a3 < 3 are searched and evaluated. In this search, the feasible gaits are

obtained with the following criteria: 1) there exists a real-value initial condition, 2)

the normal force on the stance foot is always non-negative,2 3) after impact, the

stance foot just lifts off the ground without interaction, 4) the biped does not fall

backward, i.e., in each step, the swing leg is placed strictly in front of the stance leg

at impact, 5) the joint velocities are within a reasonable range (under 100 rad/s),3

and 6) the biped does not deviate from the initially-designed step length. In our

study, criteria 2) and 4) were the limiting factors that were violated before any of the

others. After search, all the feasible gaits are shown in a colored “leaf-alike” region

2This criterion enforces that the biped keeps stance foot in contact with the ground and rules
out possible gaits that allow for flight.

3100 rad/s is a threshold to terminate simulation with divergence issue.
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in Figure 4.3. Outside boundary A, the biped can fall backward because the forward

velocity of the center of mass (CoM) reduces to zero before the CoM passes over the

stance foot. Beyond the boundary B, negative normal contact force is required, which

is not feasible. Below boundary C, the swing foot does not have negative vertical

velocity when the foot reaches the ground, so there is no occurrence of impact.

4.2.2 Three Safety Factors and Falling Causes

Define slip friction to be the minimum required coefficient of static friction that

prevents slipping along the entire gait trajectory, including at impact.4 The slip

frictions for all the feasible gaits in Figure 4.3 range between 0.1 and several thousand.

In order to make the contributions of this study practically relevant, only the gaits

with a slip friction less than or equal to 1 will be considered in the rest of this chapter,

which are shown in green in Figure 4.3.

For all the feasible gaits in green, Figure 4.4 shows at which stage in the gait

slips occur. From Figure 4.4, slips are most likely to happen at some instant in the

neighborhood of impact, with 50% of the gaits where slipping happens just at the

beginning of swing phase, 15% where slipping happens just before the impact, and

the rest, 35%, where slipping happens just at impact. This intuitively makes sense,

because our everyday experience is that a slip usually occurs just after touchdown in

human locomotion.

On a relatively slippery surface with a low coefficient of friction, slipping is likely

to occur. For some gaits, they may still be stable in the sense that the robot does

not fall and can continue to walk even if there is a slip during the gait cycle. These

gaits are said to have the tolerance ability of slipping without falling. When the

coefficient of friction of the surface is further reduced, the gait will eventually fall

4The slip friction is equivalent to the maximum necessary friction coefficient µnec along the entire
trajectory defined in [58].
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Figure 4.4. Percentage of gaits in different categories that correspond to
different slipping instants. < 1% represents that the most susceptible (to

slipping) instant is at the first 1% cycle of a swing phase. > 99% represents
that the instant is at the last 1% cycle of the swing phase, and 1− 99%

indicates that the instant is in the middle of the swing phase. “at impact”
indicates that the instant is just at the impact. Slips happen near impact.

over at some point. Thus, define falling friction as the minimum required coefficient

of static friction to maintain a stable walking and avoid falling. Therefore, a robust

gait in the sense of preventing slipping or falling is a gait that 1) requires relatively

small slip friction, 2) requires small falling friction, and 3) can tolerate some slipping

without falling.

Throughout this chapter we assume that the coefficient of static friction is 1.2

times the coefficient of kinetic one [43]. To obtain the falling friction for each feasible

gait, simulations start with a friction coefficient that is slightly larger than the slip

friction (with an addition of 0.002), and we repeat the simulation with the coefficient

of friction decreased by 0.01 until the gait fails. The criteria used to determine a fall

are that within 50 steps: 1) a negative normal force is required, 2) the biped falls

backward, or 3) unreasonably large joint velocities are generated (greater than 100

rad/s). It shows that on slippery ground, the gaits fail either by falling backward
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Figure 4.5. Top: A feasible gait (obtained on a rough no-slip surface) fails
because of falling backward. Bottom: A feasible gait fails due to requiring

negative contact force, which cannot be provided by the ground.

(because the biped cannot move its CoM to pass over the stance foot), or by requiring

negative normal force, as illustrated in Figure 4.5. The feasible gaits that fail due

to falling backward are concentrated at the bottom-left of the green region in Figure

4.3 (outlined by dashed line), and they generally have low cost of transport (CoT).5

The rationale is that slipping can drain energy from the system, eventually leaving

it without the energy necessary to take the next step. The other gaits fail because

of requiring negative contact force. Note that success or failure of a gait on slippery

ground is tested with a 50-step simulation. More rigorous stability analysis about

the switching that happens among different modes can be considered in future [48].

On the top plot in Figure 4.5, at the instant (t ≈ 9.5 s) when the biped just

starts falling backward, the x-direction velocity of the CoM is zero when the CoM is

above the stance foot. It suggests that for a good gait, the slope of the x-trajectory

of the CoM w.r.t. time during one step is expected to be sufficiently large, especially

when the CoM is just above the stance foot. This actually requires that the gait

5Smaller CoT means better energy efficiency.
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have sufficient forward speed in order to be more robust on slippery ground because

it gives some room to reject the disturbance caused by foot slipping. On the bottom

plot, since the y-direction acceleration of the CoM is determined by the contact force,

it is expected that the y-trajectory of the CoM be moderately “flat”, with no large

instantaneous changes, so as to better avoid the negative contact force when slip

occurs.

4.3 Robust Gait Design on Slippery Surfaces

4.3.1 Smaller Step or Slower Walking

This section reveals the relationships among robustness (on slippery surfaces),

walking speed and step length for the compass gait biped. For the nominal model in

Figure 4.1 with a step length of 0.445 m, all the feasible gaits (illustrated in green

in Figure 4.3) have a range of speeds varying from 0.1 m/s to 0.7 m/s. There are

many gaits to achieve a specific walking speed. Thus, optimization is used to select

all the optimal gaits in terms of the CoT, for a specified speed and step length. The

objective function is

CoT =
Wtotal

mgLtotal
=

1

mgLtotal

∫ T

0

‖q̇1(t)u(t)‖ dt, (4.16)

where Wtotal is the total work (including both positive and negative work) done to

walk a distance of Ltotal, q̇1 is the hip joint angle, u is the torque applied at the hip,

T is the step duration, and the decision variables in the optimization are a2 and a3,

which are the two free parameters to define a gait. The constraints are the model

dynamics and feasible conditions. MATLAB’s fmincon() is adopted to optimize the

gaits with a range of different walking speeds (SPD) and step lengths (SL), as shown

in Table 4.1. For the model defined in Figure 4.1, 10 sets of walking speeds and

10 sets of step lengths are specified and combined to generate 100 optimal gaits.
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TABLE 4.1

COMBINATION OF DIFFERENT SPEEDS AND STEP LENGTHS.

SPD (m/s) 0.15 0.20 0.25 0.30 0.35

SPD (m/s) 0.40 0.45 0.50 0.55 0.60

SL (m) 0.145 0.195 0.245 0.295 0.345

SL (m) 0.395 0.445 0.495 0.545 0.595

Figure 4.6 demonstrates an optimization example with the nominal model and the

step length of 0.445 m. The optimized gaits are the red dots, where the specified

speed contour tangentially touches its optimized CoT contour. Note that it is more

difficult to accurately obtain the optimized gaits with small speed (see the red dots

on the left side in Figure 4.6) because, those gaits are condensed in a very small

region.

Figure 4.7 shows relationship among speed, step length and CoT for the gaits.

For a specified step length (in the left plot), the gaits with lower speeds require

smaller CoT. The CoT, however, does not drop much when the speed is lower than

a certain value, which depends on the step length. For gaits with small step lengths,

the CoT could even slightly increase. When the speed is fixed (in the right plot),

there is an optimal step length that requires the minimum CoT, thus giving the most

energetically efficient gait. Unsurprisingly, the optimal step length also increases as

the speed increases.

Figures 4.8 shows the relationship between robustness and walking speed for the

gaits. Slow walking can help prevent slipping or falling in some sense, but it should

not be too slow. Specifically, for the gaits with large step length (such as ≥ 0.345 m),

smaller walking speed helps improve the robustness by requiring smaller slip friction
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Dashed lines are selected level sets of gaits with the same speed, which
from left to right correspond to 0.3 m/s, 0.4 m/s, 0.5 m/s, and 0.6 m/s,

respectively.
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Figure 4.8. SPD - slip/falling friction relationship for gaits with different
step lengths. The right plot uses the same SL-color representation as the

left one.

and falling friction. For the gaits with small step lengths (such as ≤ 0.245 m/s),

there is an optimal walking speed, and the required friction could even increase at

very low speeds.

Figure 4.9 shows the relationship between robustness and step length for the gaits.

Given a fixed walking speed, there is an optimal step length to prevent slipping or

falling. To design a gait that can maintain stable walking on slippery ground such

as on snow with µs = 0.2, relatively small walking speeds (≤ 0.45 m/s) and small

step lengths (≤ 0.35 m) are required. However, the gait with the smallest step length

(0.145 m) and slowest speed (0.15 m/s) does not demonstrate the best robustness,

and it actually requires µs > 0.2 to maintain stable walking. Among all 100 optimized

gaits that correspond to a combination of different speeds and step lengths (see Table

4.1), the gait with speed of 0.25 m/s and step length of 0.145 m requires the minimum

slip friction (0.06) and falling friction (0.04).

To make the results, regarding the independent influence of step length and speed

on gait robustness, more straightforward, all the aforementioned optimal gaits are
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Figure 4.9. SL - slip/falling friction relationship for gaits with different step
speeds. The right plot uses the same SPD-color representation as the left

one.

classified into categories with different speed levels and step length levels: S1 rep-

resents small speed (≤ 0.2 m/s), M1 represents medium speed (0.2 − 0.5 m/s), L1

represents large speed (≥ 0.5 m/s), S2 represents small step length (≤ 0.2 m), M2

represents medium step length (0.2− 0.5 m), and L2 represents large step length (≥

0.5 m). A combination of different speed and step length levels generates 9 categories.

For example, S1L2 represents the category of gaits with small speed and large step

length.

Figure 4.10 shows the required slip friction and falling friction for different cat-

egories of gaits. Broadly speaking, the robustness of gaits has three levels: most

robust, medium robust and least robust. Groups S1S2, S1M2, M1S2 and M1M2 are

the most robust because the gaits in those categories require small slip and falling

friction. It is not surprising in that robust gaits on slippery ground should avoid

fast walking and large step length. Note that the category M1S2 includes the gait

that requires the minimum slip and falling friction, and it suggests that a gait with

medium walking speed and small step length (M1S2) is preferable for walking on
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slippery ground. One possible reason is that smaller step lengths can move the CoM

closer to the slipping base of support, thus improving stability. Moreover, a slip

usually happens near impact for all feasible gaits, and stability deteriorates starting

from the onset of the slip [7]. After the slip happens, small step length combined

with moderate walking speed only demands short time for the foot to impact the

ground, which can adjust the support and improve stability.

In stark contrast, the categories S1L2, M1L2 and L1L2, which have the common

feature of large step length, are the least robust because they require very large slip

friction and falling friction. This implies that gaits with large step lengths are not

robust on slippery surfaces. If we compare the least robust categories with L1S2

and L1M2 that both have large walking speed, large step length, in some sense, is a

more adverse factor than fast walking speed in deteriorating the gait robustness on

slippery ground. Assume the net ground reaction force acts along the line of the leg

or the line from the point of contact to the hip, which would be exactly true if the leg

were massless. By taking shorter steps, the leg is oriented more vertically when the

swing foot hits the ground, which means more of the net ground reaction force acts

vertically, as opposed to in the plane of the ground. This provides an explanation for

gaits with shorter step length having less likelihood of slip.

4.3.2 Robustness and Swing Backward Foot Feature

Recall that in Section 4.2, a robust gait on slippery surfaces is a gait that requires

relatively small slip friction and falling friction and can tolerate some slipping without

falling. For the model in Figure 4.1, a very high percentage (over 99%) of gaits with

a negative swing foot velocity relative to the ground (a “swing-backward foot”) just

before touch down can tolerate some slipping without falling. In contrast, about a

half of gaits with swing-forward foot would fail once a slip occurs.

Figure 4.11 shows the required slip friction and falling friction for all the feasible
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Figure 4.10. Each dot represents an optimized gait. The x-label represents
the categories of gaits with different speed and step length levels. Note that
the gaits in category M1S2 (medium speed and small step length) require

very small slip friction and falling friction, and M1S2 also contains the gait
with the minimum slip and falling friction.

gaits, respectively. The feasible gaits can be split into two types, indicated in Figure

4.11 by a black line. All the gaits with the swing-backward feature are above the

line, while all the gaits with the swing-forward feature are below it. The gaits with

relatively small slip and falling friction (that are in blue and outlined) are concen-

trated above the black line in both plots. Therefore, the robust gaits tend to have

the swing-backward feature. For swing-backward, the backward movement of the

foot reduces the velocity mismatch between the foot and the ground in the anterior-

posterior direction. Consider an extreme case. If the biped retracted at exactly the

negative of the forward velocity of the body, the swing foot could have a net anterior-

posterior velocity of exactly zero at touchdown. This would make the impact forces

in the anterior-posterior direction zero, eliminating the possibility of slip.

The line splitting the two types of gaits can be analytically computed. The x-
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Figure 4.11. Each dot is a feasible gait. Left: the color represents the
magnitude of slip friction. Right: the color represents the magnitude of

falling friction.

direction velocity of the swing foot is

vx = q̇2l cos q2 + (q̇1 − q̇2)l cos(q1 − q2).

Just before impact, the velocity is

v−x = q̇−2 l cos q−2 + (q̇−1 − q̇−2 )l cos(q−1 − q−2 ), (4.17)

where v−x is the x-direction velocity of the swing foot just before impact, q−1 and q−2

are hip and ankle joint angles just before impact, and q̇−1 and q̇−2 are hip and ankle

joint velocities just before impact. Note that q−1 = 2q−2 for a symmetric biped. Thus,

it can be further simplified,

v−x = q̇−1 l cos(q−1 − q−2 ). (4.18)

Note that the term cos(q−1 −q−2 ) is positive, and a positive (negative) q̇−1 determines
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the swing-forward (swing-back) for a gait. The ankle joint angle q2 is monotonically

increasing in the HZD controller design, thus giving q̇−2 > 0. Therefore, to have a

gait with the swing-back feature, it is required that q̇−1 /q̇
−
2 should be negative. Recall

in Figure 4.2 that

q̇−1
q̇−2

=
a4 − a3
π/28

(4.19)

and thus, a3 > a4 = π/7 gives a gait with the swing-backward feature and a3 < a4 =

π/7 gives a gait with the swing-forward feature. The value of a3 is the line in Figure

4.11 that differentiates the two types of gaits.

The aforementioned result is applicable even if a higher-order Bézier polynomial

is adopted to design the gaits. The slope at the end point of the Bézier curve is

defined by the last and second-to-last control points, as shown in Equation (4.19).

Thus, the second-to-last control point can always be used to design a robust gait

with the swing-backward feature.

To verify that this result is not specific to the model parameters used for the

nominal model, Table 4.2 lists different models for study. Model-0 is the nominal

model. Model-1x represent models that vary masses relative to Model-0. Model-2x

represent models that vary leg lengths. Model-3x represent models that vary positions

of the CoM of the legs. These values are similar to the values taken for the compass

gait biped model in [30, 119].

Simulation shows that varying masses or leg lengths does not qualitatively affect

the aforementioned result, i.e., the gaits with the swing-backward feature are more

robust on slippery surfaces. However, varying the CoM location of each leg shows

more complicated results, and thus, five sets of models with different CoM positions

are studied. See Model-0 and Model-3x in Table 3.1. In Figs. 4.12-4.14, the x-axis,

position of the leg CoM relative to the foot, represents the ratio of distance between

the foot and the leg CoM over the leg length. In an extreme case, if the CoM coincides

with the foot, the value is 0. Figure 4.12 shows success percentages among the two
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TABLE 4.2

BIPED MODELS WITH VARYING PARAMETERS.

Model Code m (kg) J (kg ·m2) l (m) lc (m)

Model-0 5 0.6 1 0.8

Model-1a 1 0.12 1 0.8

Model-1b 10 1.2 1 0.8

Model-2a 5 0.14 0.5 0.4

Model-2b 5 1.3 1.5 1.2

Model-3a 5 0.5 1 0.7

Model-3b 5 0.55 1 0.75

Model-3c 5 0.65 1 0.85

Model-3d 5 0.7 1 0.9
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Figure 4.12. Success of a gait indicates that the gait can tolerate some
slipping without falling. Blue dots represent the success percentages among
the gaits with swing-backward feature, and red dots represent the success

percentages among the gaits with swing-forward feature.
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Figure 4.13. Percentages of the two types of gaits in the total feasible gaits,
for models with different positions of leg CoM.

types of gaits. The gaits with the swing-backward feature have advantages over those

with the swing-forward feature almost through the whole range, and the advantage

is the most significant at some point between 0.8 and 0.85.

When increasing the CoM location of each leg, the feasible region gets larger.

Along with that, the percentage of the gaits with the swing-backward feature also

gradually increases, as shown in Figure 4.13. When the position is over 0.8, the

percentage of gaits with the swing-backward feature seems to converge to a stable

value. Also note that when the CoM location of each leg decreases to 0.7, there are

very few gaits with the swing-backward feature.

Figure 4.14 illustrates the slip and falling friction for the two types of gaits.

Generally, the gaits that require the smallest slip and falling friction for different

models have the swing-backward feature, which can be obtained by comparing the

top two plots. The only exception is the Model-3a with the position of the CoM at 0.7

- the gait with the smallest slip friction has the swing-forward feature because there

is nearly no gait with the swing-backward feature for that Model-3a. The bottom

two plots compare the median slip and falling friction for the two types of gaits. The
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Figure 4.14. Blue dots represent the cases for gaits with the
swing-backward foot feature, and red dots are for gaits with the

swing-forward foot feature. For example, in the top-left plot, blue (red)
dots represent the minimum slip friction among all the feasible gaits with

the swing-backward (swing-forward) feature. In general, gaits with the
swing-backward foot feature require smaller slip and falling friction than

ones with the swing-forward feature, regardless of the position of leg CoM.
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median slip friction for gaits with the swing-forward feature is generally smaller than

that for the the gaits with the swing-backward one, partly due to the fact that the

gaits with the swing-backward feature comprise a much larger percentage among all

the feasible gaits as shown in Figure 4.13. Despite all this, the median falling friction

for the gaits with the swing-backward feature is generally smaller than that for the

gaits with the swing-forward one. Therefore, the gaits with the swing-backward

feature should be more robust in the sense of preventing slipping and falling.

Another observation from Figure 4.14 is that the minimum and median slip (or

falling) friction generally decrease as the biped has a higher CoM position of each

leg. This suggests that increasing the CoM locations of the legs may help design a

biped that is suitable for slippery ground. As the position of the CoM is over 0.8,

however, the friction seems to converge to a stable value. In other words, increasing

the location of CoM does not help much improve the robustness when the position is

over 0.8. Also considering in Figure 4.12 that the success rate for the gaits with the

swing-back feature falls dramatically as the CoM position is over 0.85, an optimal

biped design should have a CoM located at some point between 0.8 and 0.85.

4.4 Conclusions

This chapter studies a compass gait biped robot with foot slipping [25, 27]. It

presents the dynamics of swing phases at sticky and slip modes and the derivation of

a general impact map in detail. On a rough no-slip surface, we consider the feasible

gaits as those that only allow forward motion without a flight phase, and then use

the feasible gaits to study the relationship between gait features and robustness on

slippery ground. The simulation with a compass gait biped on slippery ground well

captures that a slip occurs near the impact, i.e., at both the two ends of a gait cycle,
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which has been demonstrated in experiment6.

When the actual friction of ground is smaller than the friction to maintain no-slip

walking, a slip happens. When the actual friction is sufficiently small, the feasible

gaits (obtained from rough no-slip walking) fail, by falling backward or by requiring

negative contact force. Three safety factors are proposed to measure the robustness

of a gait on slippery ground: slip friction, falling friction and tolerance ability of

slipping without falling. A robust gait in the sense of preventing slipping and falling

is a gait that requires small slip and falling friction to maintain stable walking, and

that can tolerate some slipping without falling.

In the study of independent influence of speed and step length on the gait ro-

bustness, large step length and fast walking should be avoided in designing gaits

on slippery ground, especially large step length, because it is a more adverse factor

than fast walking in deteriorating gait robustness on slippery ground. Among the

relatively robust gaits, small step length and moderate walking speed are preferable.

Similar results have also been found in human locomotion [44]. The gaits with a

swing-backward feature are more robust than those with a swing-forward feature,

which is validated by models with varying parameters. This result is consistent with

that in [121], which shows that the swing leg retraction before impact can improve

biped walking stability.

6Refer to the video [71]: https://www.youtube.com/watch?v=cEFkQ-Ui8U
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CHAPTER 5

NONLINEAR CONTROLLABILITY OF UNDERACTUATED SERIAL ROBOTS

Robots can be classified according to their structural topologies [115]. A serial

robot or open-loop manipulator (pendulum) takes the form of an open-loop kinematic

structure, while a parallel manipulator is made up of a closed-loop chain. A hybrid

manipulator consists of both open- and closed-loop chains. This chapter is dedicated

to underactuated serial robots, including acrobatic robots. Section 5.1 will use a

two-link underactuated manipulator to show the accessibility and controllability by

presenting all the details of Lie bracket computation. Section 5.2 extends the analysis

to a general N -link model.

5.1 Two-Link Model

To set up the N -link results, this section considers accessibility and STLC for

two-link horizontal manipulators with one degree of unactuation. The manipulators

can have two possible actuator configurations, the pendubot and acrobot, which are

illustrated in Figure 5.1. The masses, moments of inertia, link lengths and distances

between CoM and corresponding joints are m1, I1, l1, lc1 for link 1, and m2, I2, l2,

lc2 for link 2. To facilitate further computation, we define

α1 = m1l
2
c1

+m2l
2
1 + I1, α2 = m2l

2
c2

+ I2, β1 = m2l1lc2 .
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Figure 5.1. Two-link horizontal manipulators. Left: pendubot. Right:
acrobot.

5.1.1 Pendubot Configuration

The dynamics for a horizontal pendubot are given by

M11 M12

M21 M22


q̈1
q̈2

+

C1

C2

 =

τ1
0

, (5.1)

where q1 is the absolute angle and q2 is the relative angle indicated in Figure 5.1 and1

M11 = α1 + α2 + 2β1c2 M12 = α2 + β1c2

M21 = α2 + β1c2 M22 = α2

and C1 = −2β1q̇1q̇2s2 − β1q̇22s2, C2 = β1q̇
2
1s2.

The partial feedback linearization method can simplify the form of the dynamics

[105]. We introduce the input u1 and design τ1 by

τ1 =
M22C1 −M12C2

M22

+
M11M22 −M12M21

M22

u1, (5.2)

which yields q̈1 = u1, q̈2 = −C2/M22 −M21u1/M22.

Let x1 = q1, x2 = q2, x3 = q̇1 and x4 = q̇2, which thus converts the system into a

1s2, c2 are the typical abbreviations for sin(q2), cos(q2), respectively.
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simplified control-affine form

ẋ = f(x) + g1(x)u1, (5.3)

where the state vector x = (x1, x2, x3, x4), the drift field f(x) = (x3, x4, 0,−C2/M22),

and the input vector field g1(x) = (0, 0, 1,−M21/M22). The equilibrium points are

zero-velocity states, where q̇1 = q̇2 = 0.

Theorem 5.1. A two-link horizontal pendubot is accessible from almost any state.

Proof. Consider the vector fields

g1(x) = (0, 0, 1, A1(x))

[f, g1](x) = (−1,−A1(x), 0, A2(x))

[g1, [f, g1]](x) = (0, 0, 0, A3(x))

[f, [g1, [f, g1]]](x) = (0,−A3(x), 0, A4(x)),

(5.4)

where

A1(x) = −α2 + β1 cos(x2)

α2

A2(x) =
β1(2x3 + x4) sin(x2)

α2

A3(x) = −β
2
1 sin(2x2)

α2
2

A4(x) = −2β2
1x4 cos(2x2)

α2
2

.

When A3(x) 6= 0, i.e., x2 6= kπ/2, k ∈ Z, the vector fields



0

0

1

A1(x)


︸ ︷︷ ︸

g1



0

0

0

A3(x)


︸ ︷︷ ︸

[g1,[f,g1]]



−1

−A1(x)

0

A2(x)


︸ ︷︷ ︸

[f,g1]



0

−A3(x)

0

A4(x)


︸ ︷︷ ︸

[f,[g1,[f,g1]]]

are independent and span the state space.

However, the pendubot does not satisfy the sufficient conditions for STLC in these
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coordinates, which will be shown in a following theorem. Before proving the theorem,

we need a lemma. This lemma provides a property of the nontrivial brackets that will

be used to prove the theorem about STLC for the two-link and N -link. The proof

to the lemma can be found in Appendix E, which follows the same line of reasoning

as [67, 68]. We include the proof in this thesis for completeness and to provide some

direct computational details not included in those references.

Lemma 5.2. For N -link horizontal planar manipulators with one unactuated joint,

the only nontrivial brackets evaluated at the equilibrium are those satisfying

m∑
i=1

δi(B)− δ0(B) = 0 or 1.

Theorem 5.3. The two-link horizontal pendubot does not satisfy the sufficient con-

ditions for STLC stated in Theorem 2.12.

Remark. The nontrivial brackets at equilibrium are,

Degree 1: {f, g1}

Degree 2: {[f, g1]}

Degree 3: {[g1, [f, g1]]}

Degree 4: {[f, [g1, [f, g1]]], [g1, [f, [f, g1]]] }.

When the degree is over 3, the nontrivial brackets at equilibrium should contain at

least two f and two g1. Otherwise, the brackets are trivial at equilibrium according to

Lemma 5.2. For example, [f, [f, [f, g1]]] and [g1, [g1, [f, g1]]] are trivial at equilibrium.

Proof. Of the four vector fields in Equation (5.4), [g1, [f, g1]] is a bad bracket. The

goal is to find good brackets with lower θ-degree to neutralize [g1, [f, g1]] (see the text

around Equation (2.14) in Chapter 2 for the definition of good and bad brackets).

Obviously it cannot be θ-neutralized by g1 and [f, g1], since they are independent
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except when A3(x) = 0.

Using Lemma 5.2, the nontrivial good brackets (evaluated at equilibrium) except

g1, [f, g1] and [f, [g1, [f, g1]]] should contain at least two g1 and two f , leading to

a θ-degree no smaller than that for [g1, [f, g1]]. Therefore, [g1, [f, g1]] cannot be θ-

neutralized, and thus, the two-link horizontal pendubot does not satisfy the sufficient

conditions for STLC.

Because there is only one input vector field for the two-link, the only nontrivial

bracket of degree 3 is bad, which cannot be neutralized by lower order good brackets.

Therefore, it does not satisfy sufficient conditions for STLC. For N -links (N ≥ 3),

however, there is more than one input vector field, and we will show that the nontrivial

bad brackets can be θ-neutralized, which makes the N -link STLC from a subset of

equilibria. The results about N -links (N ≥ 3) will be given in Section 5.2.

5.1.2 Acrobot Configuration

The dynamics for a horizontal acrobot are described by

M11 M12

M21 M22


q̈1
q̈2

+

C1

C2

 =

 0

τ1

, (5.5)

with the same inertia and Coriolis matrices as in Equation (5.1).

We introduce an input u1, and design τ1 by

τ1 =
M11C2 −M21C1

M11

+
M11M22 −M12M21

M11

u1, (5.6)

which yields q̈1 = −C1/M11 −M12u1/M11, q̈2 = u1.

Let x1 = q1, x2 = q2, x3 = q̇1 and x4 = q̇2, which gives a control-affine form for

the system

ẋ = f(x) + g1(x)u1, (5.7)
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where the state vector x = (x1, x2, x3, x4) , (q1, q2, q̇1, q̇2), the drift field f(x) =

(x3, x4,−C1/M11, 0), and the input vector field g1(x) = (0, 0,−M12/M11, 1).

Theorem 5.4. A two-link horizontal acrobot is not accessible from any state.

Proof. The first-order Lie brackets for the model are

f(x) = (x3, x4, A1(x), 0), g1(x) = (0, 0, A2(x), 1);

the nontrivial second-order brackets are

[f, g1](x) = (−A2(x),−1,−A1(x)/x4, 0);

and the nontrivial third-order brackets are

[f, [f, g1]](x) = (A3(x), 0, 0, 0),

where

A1(x) =
2β1x3x4s2 + β1x

2
4s2

α1 + α2 + 2β1c2

A2(x) = − α2 + β1c2
α1 + α2 + 2β1c2

A3(x) =
2β1(α1x3 + α2(x3 + x4) + β1(2x3 + x4)c2)s2

(α1 + α2 + 2β1c2)2
.

Note that the bracket [f, [f, g1]] is a linear combination of the two lower-order

vector fields f and [f, g1] because,

[f, [f, g1]] =
A3

−x4A2 + x3
(f + x4[f, g1]) .

The distribution generated by f , g1 and [f, g1] is involutive [87]. Thus, the dimen-

sion of the involutive closure of the distribution is dim(∆) = 3, which is less than the

dimension of the state space manifold. Therefore, the two-link horizontal acrobot is
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not accessible from any state.

In fact, if we consider the distribution only on a manifold of all equilibrium points

with x3 = x4 = 0, the dimension of the distribution is two. The results are consistent

with the results in [88]. For a horizontal acrobot, because q1 is a cyclic coordinate (it

does not appear in the inertia matrix) and no gravity is concerned in the dynamics,

the first row in Equation (5.5), M11q̈1 +M12q̈2 + C1 = 0 can be integrated to

M11q̇1 +M12q̇2 + k1 = 0, (5.8)

where k1 is constant.

Equation (5.8) provides a constraint on the velocity states, which can also be

derived by momentum conservation. In other words, the quantity M11q̇1 + M12q̇2

remains constant for the acrobot regardless of the control inputs. This explains

why the dimension of the distribution ∆ is 3 in general. If we consider only the

equilibrium points, i.e., k1 = 0 in this case, Equation (5.8) can be further integrated

to a holonomic constraint,

q1 = atanh

(
α1 + α2 − 2β1√

(2β1 + α1 + α2)(2β1 − α1 − α2)
tan

q2
2

)

× α2 − α1√
(2β1 + α1 + α2)(2β1 − α1 − α2)

− q2
2

+ k2,

where k2 is constant (depends on the initial conditions). Hence, when evaluating on

the manifold of equilibrium points, the dimension of ∆ is reduced to 2.

The accessibility result for the acrobot is consistent with that in [88] but is differ-

ent in that they directly integrated the dynamics equation while this chapter adopts

Lie-algebraic analysis. Note that the Lie-algebraic method is straightforward. It can

give insight into the nature of dynamics, and can also be applied to an N -link model,

which will be presented in Section 5.2.
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Corollary 5.5. The two-link horizontal acrobot is not STLC from any state.

5.2 N-Link Model

5.2.1 An Introductory Example: Three-link

The configurations of three-link horizontal manipulators are shown in Figure 5.2.

The work in [62] has proven that a horizontal three-link with the first joint actuated

is controllable, while a three-link with the first joint unactuated is not. We will

briefly present the accessibility and STLC results for the three configurations, which

are illustrated in Figure 5.2. In the three-link model, the masses, moments of inertia,

link lengths and distances between CoM and corresponding joints are m1, I1, l1, lc1

for link 1, m2, I2, l2, lc2 for link 2, and m3, I3, l3, lc3 for link 3.

Modeling for the three-link, underactuated horizontal manipulators and applying

partial feedback linearization to simplify the equations can be found in Appendix D.

The parameters for some moments of inertia can also be found in Appendix D.

Configuration 1

The dynamics can be written in a control-affine form

ẋ = f(x) + g1(x)u1 + g2(x)u2, (5.9)

where

x = (x1, x2, x3, x4, x5, x6) , (q1, q2, q3, q̇1, q̇2, q̇3)

f(x) = (x4, x5, x6, 0, 0, P (x)) g1(x) = (0, 0, 0, 1, 0, Q1(x))

g2(x) = (0, 0, 0, 0, 1, Q2(x)),

and

P (x) = −x
2
4(β3 sin(x3) + β4 sin(x2 + x3)) + 2x4x5β3 sin(x3)

α3

− β3x
2
5 sin(x3)

α3

Q1(x) = −α3 + β3 cos(x3) + β4 cos(x2 + x3)

α3

Q2(x) = −α3 + β3 cos(x3)

α3

.

100



𝒒𝟏

𝒒𝟐

𝝉𝟏
Link 1

Link 2

𝒒𝟑
Link 3

𝝉𝟐

𝒒𝟏

𝒒𝟐

𝝉𝟏

𝒒𝟑

𝝉𝟐

𝒒𝟏

𝒒𝟐
𝝉𝟏

𝒒𝟑

𝝉𝟐
1 32

Figure 5.2. Three-link horizontal manipulators. Configurations 1 and 2:
actuated at least at the first joint. Configuration 3: unactuated at the first

joint.

Theorem 5.6. The three-link horizontal pendubot with configuration 1 is accessible

from almost any state.

Proof. We can pick six vector fields as follows,

g1(x) = (0, 0, 0, 1, 0, Q1(x)) [f, g2](x) = (0,−1,−Q2(x), 0, 0, ∗)

g2(x) = (0, 0, 0, 0, 1, Q2(x)) [g1, [f, g2]](x) = (0, 0, 0, 0, 0, R1(x))

[f, g1](x) = (−1, 0,−Q1(x), 0, 0, ∗) [f, [g1, [f, g2]]](x) = (0, 0,−R1(x), 0, 0, ∗),
(5.10)

where

R1(x) = −β3(β3 sin(2x3) + β4 sin(x2 + 2x3))

α2
3

,

and ∗ represents an arbitrary expression (which does not affect the following control-

lability analysis).

When R1(x) 6= 0, i.e., β3 sin(2x3) + β4 sin(x2 + 2x3) 6= 0, the above six vector
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fields

0

0

0

1

0

Q1(x)


︸ ︷︷ ︸

g1



0

0

0

0

1

Q2(x)


︸ ︷︷ ︸

g2



0

0

0

0

0

R1(x)


︸ ︷︷ ︸

[g1,[f,g2]]



−1

0

−Q1(x)

0

0

∗


︸ ︷︷ ︸

[f,g1]



0

−1

−Q2(x)

0

0

∗


︸ ︷︷ ︸

[f,g2]



0

0

−R1(x)

0

0

∗


︸ ︷︷ ︸

[f,[g1,[f,g2]]]

are independent by inspection and can span the state space.

Remark. Some of the singular states include cases when x2 = k1π and x3 = k2π/2,

where k1, k2 ∈ Z.

Accessibility only guarantees that the dimension of reachable space from the states

is full dimension. We will further show STLC of the system, which enables changing

the states in all directions within any time T > 0.

Theorem 5.7. The three-link horizontal pendubot in configuration 1 is STLC from

a subset of equilibrium points.

Proof. Note that all the brackets in Equation (5.10) are good. We have to show that

all bad Lie brackets are θ-neutralized. Two bad brackets that have the same number

of vector fields with [g1, [f, g2]] are

[g1, [f, g1]](x) = (0, 0, 0, 0, 0, R2(x)), [g2, [f, g2]](x) = (0, 0, 0, 0, 0, R3(x)),

where

R2(x) = −β4(β4 sin(2(x2 + x3)) + 2β3 sin(x2 + 2x3))

α2
3

− β2
3 sin(2x3)

α2
3

R3(x) = −β
2
3 sin(2x3)

α2
3

.
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Since they cannot be neutralized by [g1, [f, g2]] at the same time, we assign the

θ-degrees to f , g1 and g2 by setting θ0 = 1, θ1 = 1 and θ2 = 2, which will give the

θ-degrees 4, 3, 5 for [g1, [f, g2]], [g1, [f, g1]] and [g2, [f, g2]], respectively. This indicates

that the bad bracket [g2, [f, g2]] can be neutralized by the good bracket [g1, [f, g2]],

while [g1, [f, g1]] cannot. Therefore, we have to require [g1, [f, g1]] to be trivial to

make the θ-neutralization happen for the two bad brackets. Hence, the maximum

θ-degree for all vector fields in Equation (5.10) is 5.

Note that another two bad brackets [f, [f, [g1, [f, g1]]]] and [g1, [g1, [g1, [f, g1]]]] also

have 5 as the θ-degree, but by using Theorem 5.2, they are equal to zero when

evaluated at the equilibrium. The θ-degree for all other bad brackets is greater than

5 and can thus be neutralized.

Another way to assign the θ-degrees to f , g1 and g2 is θ0 = 1, θ1 = 2, and

θ2 = 1, which will give the θ-degrees 4, 5, 3 for [g1, [f, g2]], [g1, [f, g1]] and [g2, [f, g2]],

respectively. In this case, we need to make [g2, [f, g2]] trivial in order to neutralize

both bad brackets. Thus, the system is STLC from all equilibrium states xe satisfying

R2(xe)R3(xe) = 0 and R1(xe) 6= 0.

Remark. The pendubot in configuration 1 is STLC from the equilibrium states

when q3 = k1π/2 and q2 6= k2π, k1, k2 ∈ Z. Theorem 5.7 does not claim that the

system is not STLC from the equilibrium points that fail to satisfy R2(xe)R3(xe) = 0

and R1(xe) 6= 0, since Sussmann’s general theorem provides sufficient conditions on

STLC, which is also a stronger property than controllability.

Configuration 2

By following the same reasoning for configuration 1, it can be shown that the

three-link horizontal pendubot in configuration 2 is accessible from almost any state

and STLC from a subset of equilibrium points.

Configuration 3
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The dynamics are described by

ẋ = f(x) + g1(x)u1 + g2(x)u2, (5.11)

where

x = (x1, x2, x3, x4, x5, x6) , (q1, q2, q3, q̇1, q̇2, q̇3)

f(x) = (x4, x5, x6, S(x), 0, 0) g1(x) = (0, 0, 0, T1(x), 1, 0)

g2(x) = (0, 0, 0, T2(x), 0, 1),

and

S(x) =
Num1

Den
, T1(x) =

Num2

Den
, T2(x) =

Num3

Den
,

with

Num1 = β4(x5 + x6)(2x4 + 2x5 + x6) sin(x2 + x3) + β3x6(2x4 + 2x5 + x6) sin(x3)

+ (β1 + β2)(2x4 + x5)x5 sin(x2)

Num2 = −α2 − α3 − (β1 + β2) cos(x2)− 2β3 cos(x3)− β4 cos(x2 + x3)

Num3 = −α3 − β3 cos(x3)− β4 cos(x2 + x3)

Den = α1 + α2 + α3 + 2(β1 + β2) cos(x2) + 2β3 cos(x3) + 2β4 cos(x2 + x3).

Theorem 5.8. The three-link horizontal manipulator in configuration 3 is not ac-

cessible from any state.

Proof. Consider a distribution ∆ = {f, g1, g2, [f, g1], [f, g2]}, where

[f, g1](x) = [−T1(x),−1, 0, V1(x), 0, 0] [f, g2](x) = [−T2(x), 0,−1, V2(x), 0, 0],

and

V1(x) =
Num4

Den
, V2(x) =

Num5

Den
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Num4 = −(β1 + β2)(2x4 + x5) sin(x2)− β4(2x4 + x5 + x6) sin(x2 + x3)

Num5 = −β3(2x4 + 2x5 + x6) sin(x3)− β4(2x4 + x5 + x6) sin(x2 + x3).

It can be easily shown that

[g1, g2] = 0 [gi, [f, gj]] = 0 for i, j = 1, 2,

and [f, [f, g1]], [f, [f, g2]] and [[f, g1], [f, g2]] are linear combinations of f , [f, g1] and

[f, g2]. The distribution ∆ is involutive, with the dimension of 5. We thus conclude

that the three-link horizontal manipulator in configuration 3 is not accessible from

any state.

Corollary 5.9. The three-link horizontal manipulator in configuration 3 is not STLC

from any state.

5.2.2 Controllability and Accessibility for N-link

In this section, we will extend the previous conclusions for a three-link manipu-

lator to the general case for an N -link (N ≥ 3) manipulator.

Theorem 5.10. For an N-link (N ≥ 3) horizontal manipulator with one unactuated

joint, if the first joint is actuated, it is accessible from almost any state, and also

STLC from a subset of equilibrium points. Otherwise, it is neither accessible nor

STLC from any state.

Proof. The N -Link horizontal model is illustrated in Figure 5.3. The unactuated joint

can be any among the N joints. For convenience, use q1 to denote the unactuated

joint, regardless of its position in the manipulator. The other actuated joints are thus

denoted as q2, . . . , qn, respectively. Define the configuration states q , (q1, q2, . . . , qn)

and the velocity states q̇ , (q̇1, q̇2, . . . , q̇n). For a general N -link model, the kinetic
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𝒒𝟏

Torque

Figure 5.3. An N -Link horizontal manipulator with one unactuated joint.
q1 is used to label the unactuated joint. The unactuated joint can be any

joint of the system.

energy is T = (1/2)Mij(q)q̇iq̇j, where i, j = 1, 2, . . . , n, so

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= τk k = 1, 2, . . . , n (5.12)

d

dt

(
1

2
Mkj q̇j +

1

2
Mikq̇i

)
− 1

2

∂Mij

∂qk
q̇iq̇j = τk. (5.13)

By using the symmetry of Mij to simplify Equation (5.13), we obtain

d

dt
(Mikq̇i)−

1

2

∂Mij

∂qk
q̇iq̇j = τk (5.14)

Mikq̈i +
∂Mik

∂qj
q̇iq̇j −

1

2

∂Mij

∂qk
q̇iq̇j = τk. (5.15)

To apply the partial feedback linearization, we introduce new inputs u2, . . . , un
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and construct the control inputs by

τk =
M1k

M11

(
1

2

∂Mij

∂q1
q̇iq̇j −

∂Mi1

∂qj
q̇iq̇j −

l=n∑
l=2

Ml1ul

)

+
l=n∑
l=2

Mlkul +
∂Mik

∂qj
q̇iq̇j −

1

2

∂Mij

∂qk
q̇iq̇j,

(5.16)

which give a simple control-affine form

q̈1 =
1

M11

(
1

2

∂Mij

∂q1
q̇iq̇j −

∂Mi1

∂qj
q̇iq̇j −

l=n∑
l=2

Mi1ui

)

q̈2 = u2

...

q̈n = un.

(5.17)

Therefore, the equation of the dynamics for the model is

ẋ = f(x) + g2(x)u2 + . . .+ gn(x)un, (5.18)
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where the states x = (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n),

f(x) =



q̇1

q̇2
...

q̇n

f̂(q, q̇)

0

...

0

0

0

...

0



ga(x) =



0

0

...

0

ĝa(q)

0

...

0

1

0

...

0



a = 2, . . . , n

← (n+ a)-th row

(5.19)

f̂(q, q̇) =
1

M11

(
1

2

∂Mij

∂q1
q̇iq̇j −

∂Mi1

∂qj
q̇iq̇j

)
(5.20)

ĝa(q) = −Ma1

M11

. (5.21)
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The Lie brackets are given by

[f, ga](x) =



−ĝa(q)

0

...

0

−1

0

...

0

Pa(x)

0

...

0



← a-th row

[ga, [f, gb]](x) =



0

0

...

0

0

0

...

0

Pab(x)

0

...

0



[f, [ga, [f, gb]]](x) =



−Pab(x)

0

...

0

∗

0

...

0



,

(5.22)

where a, b = 2, . . . , n, an arbitrary expression is represented by ∗ and

Pa(x) =
∂ĝa(q)

∂qi
q̇i −

∂f̂(q, q̇)

∂q̇a
− ∂f̂(q, q̇)

∂q̇1
ĝa(q) (5.23)
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Pab(x) =
∂ĝb(q)

∂qa
+
∂ĝa(q)

∂qb
− ∂2f̂(q, q̇)

∂q̇a∂q̇b
− ĝa(q)ĝb(q)

∂2f(q, q̇)

∂q̇21
− ĝa(q)

∂2f̂(q, q̇)

∂q̇1q̇b

− ĝb(q)
∂2f̂(q, q̇)

∂q̇1∂q̇a
+ ĝa(q)

∂ĝb(q)

∂q1
+ ĝb(q)

∂ĝa(q)

∂q1
.

(5.24)

Substituting Equations (5.20) and (5.21) into Equation (5.23) and simplifying the

final result lead to

Pa(x) =
1

M11

∂Mi1

∂qa
q̇i −

1

M11

∂Mia

∂q1
q̇i. (5.25)

Simplifying Equation (5.24) yields

Pab(x) =
1

M2
11

∂(Ma1Mb1)

∂q1
− 1

M11

∂Mab

∂q1
− Ma1Mb1

M3
11

∂M11

∂q1
. (5.26)

Details about simplification of Equations (5.23) and (5.24) can be found in [26].

Case 1: when the first joint is actuated

Observe that the Pab(x) in Equation (5.26) is only dependent on the configuration
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states q. We pick 2n vector fields as follows,



0

0

...

0

Pab(x)

0

0

0

...

0

0


︸ ︷︷ ︸

[ga,[f,gb]]



0

0

...

0

ĝ2(q)

1

0

0

...

0

0


︸ ︷︷ ︸

g2



0

0

...

0

ĝ3(q)

0

1

0

...

0

0


︸ ︷︷ ︸

g3

. . .



0

0

...

0

ĝn(q)

0

0

0

...

0

1


︸ ︷︷ ︸

gn

−Pab(x)

0

0

0

...

0

0

∗

0

...

0


︸ ︷︷ ︸

[f,[ga,[f,gb]]]



−ĝ2(q)

−1

0

0

...

0

0

P2(x)

0

...

0


︸ ︷︷ ︸

[f,g2]



−ĝ3(q)

0

−1

0

...

0

0

P3(x)

0

...

0


︸ ︷︷ ︸

[f,g3]

. . .



−ĝn(q)

0

0

0

...

0

−1

Pn(x)

0

...

0


︸ ︷︷ ︸

[f,gn]

,

(5.27)

where a and b are picked randomly from a set {2, . . . , n}.
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When the Pab is non-zero, it is easy to show that

γ1[ga, [f, gb]] + γ2g2 + γ3g3 + · · ·+ γngn + γn+1[f, [gk, [f, gl]]]

+ γn+2[f, g2] + γn+3[f, g3] + · · ·+ γ2n[f, gn] = 0

is satisfied only when γ1 = γ2 = . . . = γ2n = 0, which indicates that the 2n vector

fields are linearly independent and span a 2n-dimensional space. Thus, the N -link

horizontal pendubot is accessible from almost any state. Next we consider STLC of

the system.

Since in the 2n vector fields in Equation (5.27), a and b can be picked arbitrarily

from the set {2, . . . , n}, we further require that a 6= b to obtain 2n good brackets.

Moreover, we need to verify whether all bad brackets can be θ-neutralized by these

good brackets. Following the same analysis for a three-link pendubot, we first specify

a control vector field ga, and assign 1 as the θ-degree to the vector fields f and ga.

All other control vector fields have 2 as the θ-degree. Therefore, the bad brackets

[gm, [f, gm]] where m = 2, ..., n and m 6= a,

can be neutralized by the good bracket [ga, [f, gm]].

However, the bad bracket [ga, [f, ga]] has lower degree than the good one. We have

to further make [ga, [f, ga]] trivial, which is to require the Paa(x) = 0 in [ga, [f, ga]].

Therefore, the maximum θ-degree for the 2n good brackets is 5.

Using Theorem 5.2, all other nontrivial bad brackets (evaluated at the equilib-

rium) have a θ-degree larger than 5, and can thus be θ-neutralized easily. Because

the specified ga can be any vector field among {g2, . . . , gn}, it is concluded that the

system is STLC from any equilibrium state xe satisfying

1)Pab(xe) 6= 0 and 2)Paa(xe) = 0 or Pbb(xe) = 0,
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for some a, b ∈ {2, . . . , n} and a 6= b.

Case 2: when the first joint is unactuated

The unactuated joint q1 is the ankle joint, which does not appear in the inertia

matrix. Thus, we have

∂Mij

∂q1
= 0 i, j = 1, 2, . . . , n,

which leads to

Pa(x) =
1

M11

∂Mi1

∂qa
q̇i (5.28)

Pab(x) = 0. (5.29)

Based on Equation (5.29), we conclude that the vector fields [ga, [f, gb]] in Equa-

tion (5.22) are trivial. Furthermore, it can be easily computed for the model that

[f, [f, ga]](x) =



∗

0

...

0

Qa(x)

0

...

0



a = 2, . . . , n,
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where

Qa(x) =
∂Pa(x)

∂qi
q̇i︸ ︷︷ ︸

1

+
∂Pa(x)

∂q̇i
f̂(q, q̇)︸ ︷︷ ︸

2

+
∂f̂(q, q̇)

q1
ĝa(q)︸ ︷︷ ︸

3

+
∂f̂(q, q̇)

∂qa︸ ︷︷ ︸
4

−∂f̂(q, q̇)

∂q̇1
Pa(x)︸ ︷︷ ︸

5

,

i = 1, 2, . . . , n.

(5.30)

Summing the above terms yields Qa(x) = 0 (see computational details in [26]).

Also recall from Equation (5.22) that

[f, [gb, [f, ga]]](x) =



−Pba(x)

0

...

0

∂Pba
∂qi

q̇i − Pba ∂f̂∂q̇1
0

...

0



, (5.31)

and it leads to [f, [gb, [f, ga]]] = 0 due to Pba = 0 in Equation (5.29). By using the

Jacobi identity, we can further have

[[f, ga], [f, gb]] + [f, [gb, [f, ga]]] + [gb, [[f, ga], f ]] = 0,

which yields [[f, ga], [f, gb]] = [gb, [f, [f, ga]]].Note that the computation of [gb, [f, [f, ga]]]

is much simpler than that of [[f, ga], [f, gb]]. Thus, it can be easily checked that the
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vector field [[f, ga], [f, gb]] is also in the same form with [gb, [f, [f, ga]]],

[[f, ga], [f, gb]](x) =



∗

0

...

0

0

0

...

0



a, b = 2, . . . , n.

Now we consider a linear combination of f, [f, g2], . . . , [f, gn],

f(x) +
a=n∑
a=2

q̇a[f, ga](x) =



R1(x)

0

...

0

R2(x)

0

...

0



,

where

R1(x) = q̇1 −
a=n∑
a=2

q̇aĝa(q)

R2(x) = f̂(q, q̇) +
a=n∑
a=2

q̇aPa(x) = − 1

M11

∂Mi1

∂qj
q̇iq̇j +

a=n∑
a=2

q̇a

(
1

M11

∂Mi1

∂qa
q̇i

)
= − 1

M11

∂Mi1

∂q1
q̇iq̇1 = 0.

(5.32)
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In summary, for the case when the first joint is unactuated, we can show that the

vector fields [ga, [f, gb]] are trivial and the vector fields [f, [f, ga]] and [[f, ga], [f, gb]]

are both linear combinations of f, [f, g2], . . . , [f, gn]. Thus, the distribution for the

model

∆(x) = span{f, ga, [f, ga]}, a = 2, . . . , n (5.33)

is involutive with a dimension of 2n − 1. Note, however, that R1(x) = 0 and f = 0

at equilibrium states. Starting from an equilibrium state, the distribution is

∆(x) = span{ga, [f, ga], [[f, gk], [f, gl]]}, (5.34)

where a = 2, . . . , n, k, l ∈ {2, . . . , n}, and readers can verify that it is involutive with

a dimension of 2n− 1.

Therefore, the system is not accessible from any state. The result is consistent

with the fact of momentum conservation for an N -link horizontal manipulator with

the first joint unactuated. Actually, readers can also verify that the configuration

and velocity states for this model are constrained by

Mi1(q)q̇i + k1 = 0, (5.35)

because the unactuated joint q1 is the ankle joint and does not appear in both the

inertia matrix and the expression for kinetic energy. It can be naturally extended

that such model is not STLC either.

5.3 Summary

This chapter presents accessibility and STLC results for a general horizontal pla-

nar manipulators with one unactuated joint [21, 26]. Different actuator configurations
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are considered. It exploits the Lie brackets to show that the two-link pendubot is

accessible from almost any state but does not satisfy the sufficient conditions for

STLC from [113]. In contrast, a two-link acrobot is not accessible from any state,

which is due to the angular momentum conservation. Furthermore, the Lie brackets

can also show that the acrobot starting from zero-velocity states has a codimension

of two, which is due to the second-order nonholonomic constraint being reduced to a

holonomic constraint in this case.

As for N -link (N ≥ 3) manipulators with one unactuated joint, it is found that

the manipulator with the first joint actuated is accessible from almost any state

and STLC from a subset of equilibrium points. For the model with the first joint

unactuated, it is neither accessible nor STLC from any state.

Note that this chapter studies realistic models, and thus, it incorporates the full

detailed dynamics in the controllability analysis, which turns out to give relatively

simple forms for some nontrivial Lie brackets. These expressions also enable us

to determine at which configurations the model may lose full rank condition for

accessibility.
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CHAPTER 6

CONTROL SYNTHESIS FOR A CLASS OF UMS

This chapter is dedicated to controller design for UMS. Section 6.1 exploits time

reversal symmetry of mechanical systems to develop a global controller for a class

of UMS, such as a cart-pole system, underactuated pendulums on a vertical plane,

etc. Global controllability for underactuated pendulums has been strictly proven by

following the same line with Lyapunov’s method. In this controller design, a stable

equilibrium state, around which the linearization is controllable, is required as a

connection state. However, underactuated horizontal pendulums have no such stable

equilibria due to the absence of gravity terms in the system dynamics. Thus, Section

6.2 provides a polynomial-based feedforward control method to achieve point-to-

point control for such systems. Control of a two-link planar horizontal underactuated

pendulum will be given as an example.

6.1 Global Control of UMS

6.1.1 Time Reversal Symmetry and Control via Connection

To understand the time reversal symmetry, we can first consider a driftless system,

ẋ = g (x)u, (6.1)

where x ∈ Rn is the state vector of the system, u ∈ Rm is the control input, and

g(x) ∈ Rn×m is a matrix about the state x. This system has a simple time reversal

118



symmetry, i.e., if (x (t) , u (t)), t ∈ [0, T ] is a trajectory of the system (6.1), so is

(x (−t) ,−u (−t)).

Unfortunately, systems with drift do not satisfy this property. However, mechani-

cal systems without friction, such as a pendubot, possess another useful time reversal

symmetry. Consider a mechanical robotic system [110],

M (q) q̈ + C (q, q̇) q̇ +G (q) = u, (6.2)

where M(q) ∈ Rn×n is the inertia matrix that is symmetric and positive-definite,

C(q, q̇)q̇ ∈ Rn contains two types of terms involving q̇iq̇j that are centrifugal terms

when i = j and Coriolis terms when i 6= j, and G(q) is the gravity term. Note that

the term Ṁ(q)− 2C(q, q̇) is a skew symmetric matrix that satisfies

αT
(
Ṁ (q)− 2C (q, q̇)

)
α = 0, ∀α ∈ Rn. (6.3)

Reformulating system in Equation (6.2) in a control-affine form,

q̇ = v, v̇ = f0(q, v) + g0(q)u, (6.4)

where x = (q; v) is the state of the system, q is the configuration state vector, v is

the velocity state vector, u is the control input, and f0 and g0 can be computed from

Equation (6.2).

Theorem 6.1. If ((q (t) , v (t)) , u (t)), t ∈ [0, T ] is a trajectory of system described

by Equation (6.4), so is ((q(−t),−v(−t)), u(−t)).

Proof. Because ((q(t), v(t)), u(t)) is a trajectory of system in Equation (6.4),

dq

dt
= v,

dv

dt
= f0(q, v) + g0(q)u. (6.5)
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Now introduce a new time parameter τ = −t, and it follows that

dq

dτ
= −dq

dt
= −v

d(−v)

dτ
=
dv

dt
= f0(q, v) + g0(q)u.

(6.6)

Recall that from Equation (6.2) we have f0(q, v) = M(q)−1(−C(q, v)v − G(q)) and

the terms in C(q, v)v are all quadratic forms in the velocity state v. Thus, f0(q, v) =

f0(q,−v). Equations (6.6) can be rewritten as

dq

dτ
= −v

d(−v)

dτ
= f0(q,−v) + g0(q)u,

(6.7)

which proves that ((q(−t),−v(−t)), u(−t)) is also a trajectory of system (6.4).

For other alternative derivations, see [65].

Theorem 6.1 makes it feasible to generate a second trajectory when a trajectory

is given. In particular, if the final states of two trajectories are the same and have

zero velocity, i.e.,

Trajectory A : (qa, va)→ (q0, 0)

Trajectory B : (qb, vb)→ (q0, 0),

the initial states of some two trajectories have a trajectory connecting them going

through their common final state, i.e.,

Trajectory C : (qa, va)→ (q0, 0)→ (qb,−vb).

If the desired trajectory is (qa, va) → (qb, vb), we can use Trajectory A and another

Trajectory Br (qb,−vb) → (q0, 0) for that. Specifically, if the system starts at the

beginning of one of the trajectories, it can be driven to the common final state, and

then the time reversal input can be used to drive it back to the initial state of the
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second trajectory. If the common final states of these two trajectories did not have

zero velocity, this would not be possible due to the sign shift on the velocity term in

the time reversal trajectory.

Using the equilibrium state xe as a connection point, it can be further shown that

the system in Equation (6.4) is completely controllable, i.e., there is an admissible

trajectory from any given state to any given final state with appropriate control

inputs. The key is to find the best equilibrium state xe. A good strategy is to use a

stable equilibrium state instead of an unstable one as the connection point.

The Lyapunov method is used to design the control input that drives the system

to the stable equilibrium state. For the mechanical system in (6.2), the total energy

function is

E(x) =
1

2
q̇TM(q)q̇ + P (q), (6.8)

where x = (q; q̇), q̇TM(q)q̇/2 is the kinetic energy, and P (q) is the potential energy

that also satisfies ∂P (q)/∂q = GT (q). Denote the lowest energy as E0 when kinetic

energy is zero and potential energy is at the lowest level. Thus, E0 is a constant.

Without loss of generality, the state at E0 can be made a zero state with a proper

coordinate transformation. We define a function as

V (x) = E(x)− E0, (6.9)

which is positive definite, and V (x) = 0 only when x = 0.

Computing the derivative of V (x) gives

V̇ (x) =
∂V (x)

∂x
ẋ

=

[
1
2
q̇T ∂M(q)

∂q
q̇ +GT (q) q̇TM (q)

] q̇

M−1 (q) (−C (q, q̇) q̇ −G (q) + u)


=

1

2
q̇TṀ (q) q̇ − q̇TC (q, q̇) q̇ + q̇Tu,

(6.10)
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which, using Equation (6.3), gives V̇ (x) = q̇Tu.

When the system is fully actuated, i.e., the number of control inputs is equal to

n, we can design u = [−k1q̇1, . . . ,−knq̇n]T , ki ∈ R+. Thus, the directional derivative

of V (x) is

V̇ (x) = −
i=n∑
i=1

kiq̇
2
i , (6.11)

which is negative semi-definite. This validates V (x) to be a Lyapunov function, and

the proposed damping controller u can make x = 0 stable in the sense of Lyapunov.

Define E as a set of all points in a compact set (which can be defined by using the

initial condition) with V̇ (x) = 0.

By LaSalle’s invariance principle [57], because V̇ (x) is negative semi-definite, the

system will approach the largest invariant set in E. Thus, the system will converge

to the states with q̇ = 0 for all time, which are the equilibrium states of the system.

However, this method only guarantees local stability about each equilibrium state.

If we desire to drive all states to the equilibrium state corresponding to E0, we can

further add a position feedback in designing the controller. Therefore, in the end, we

can design a PD controller to stabilize the system to some desired equilibrium state.

Readers can refer to [81] for proof of global stabilization with a PD controller for

such fully actuated systems.

When the system is underactuated, i.e., the number of control inputs is m < n,

similarly, we can propose a damping controller

ua = [−k1q̇a1 , . . . ,−kmq̇am]T , ki ∈ R+, (6.12)

where ua denotes the control inputs in u and q̇a = [q̇a1 , . . . , q̇
a
m] denote the actuated

joint velocities. By LaSalle’s invariance principle, the system will converge to the

states with q̇a = 0. For a large class of UMS, such as the pendubot, it can be further

shown that the reached states with the controller in Equation (6.12) are indeed the
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equilibrium states. The formal statement will be given in Lemma 6.2, and the proof

follows the same line with Lyapunov’s method.

Proposition 1. For an UMS described by Equation (6.2) with the number of control

inputs m < n, define the stable equilibrium point x0, which corresponds to the lowest

energy of the system E0, as the connection point. If there exists a damping controller

described by Equation (6.12) to drive all states to x0, then:

(i) By using time reversal symmetry and spline interpolation, an open-loop con-

troller can be constructed to drive the system from x0 to any state in the space.

(ii) Furthermore, the system is completely controllable, i.e., there is an admissible

trajectory from any given state to any given final state.

6.1.2 Control Examples

This section illustrates the application of these principles to several examples.

6.1.2.1 The Cart-Pole System

Figure 6.1 shows the parameterization of a cart-pole system. In simulation, the

model parameters are: m1 = 5 kg, m2 = 2.5 kg and l = 1 m. The dynamics are

described by

M11 M12

M21 M22


q̈1
q̈2

+

C11 C12

C21 C22


q̇1
q̇2

+

G1

G2

 =

u
0

 , (6.13)

where

M11 = m1 +m2 M12 = m2lc2 M21 = m2lc2 M22 = m2l
2 C11 = 0

C12 = −m2lq̇2s2 C21 = 0 C22 = 0 G1 = 0 G2 = m2gls2.

As discussed in the preceding section, the system can be driven to an invariant
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Figure 6.1. The cart-pole system, where q1 is the horizontal position of the
cart and q2 is the angle of the pendulum measured from the vertical. The

revolute joint is unactuated, but a force u is applied to the cart.

set {(q, q̇) | q̇1 = 0, q̈1 = 0} with a control u = −k1q̇1, k1 ∈ R+. Note u = 0 in the

invariant set. Substituting into Equation (6.13) yields

q̈2 cos q2 − q̇22 sin q2 = 0 lq̈2 + g sin q2 = 0. (6.14)

By cancelling q̈2, we obtain

(lq̇22 + g cos q2) sin q2 = 0, (6.15)

which leads to lq̇22 + g cos q2 = 0 or sin q2 = 0. When sin q2 = 0, we have q2 =

0 or π and q̈2 = 0. Therefore, the system converges to an equilibrium point with the

pendulum pointing either upward or downward. When lq̇22 + g cos q2 = 0, taking the

derivative of both sides we get

q̇2(2lq̈2 − g sin q2) = 0, (6.16)

which leads to q̇2 = 0 or sin q2 = 0. Either case still shows that the system converges

to an equilibrium point.
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Figure 6.2. Top: use a damping controller u1(t) to drive the system from
near (q1, q2, q̇1, q̇2) = (0, π, 0, 0) to (0,0,0,0). Bottom: apply u1(−t) to drive

the system from (0, 0, 0, 0) to near (0, π, 0, 0), and the final state is
(q1, q2, q̇1, q̇2) = (−0.02, 2.98,−0.08,−0.22). Red: q1 or q̇1, blue: q2 or q̇2,

green: u1.
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Define the equilibrium point xe = (q1, q2, q̇1, q̇2) = (0, 0, 0, 0). One of the challeng-

ing problems is to swing up the pendulum from the lowest position to the upright

position, i.e., from xe to (0, π, 0, 0). We start by designing a damping controller u1(t)

that drives the system from the upright position to the lowest position, and then

exploit the time reversal symmetry and spline interpolation to obtain a controller

u1(−t) that completes the “swing-up” task. Note that the cart-pole system has infi-

nite equilibrium points, as q1 can take any real value at equilibrium points. To drive

the system to the state xe, we consider adding a position feedback about q1, and thus,

the final controller design is u1 = −kpq1−kdq̇1, kp, kd ∈ R+. Figure 6.2 demonstrates

the strategy. After the system swings the pendulum up to the upright position and

reaches near the state (0, π, 0, 0), we can switch to an LQR controller to stabilize the

system about that state.

Using xe as the connection state, Figure 6.3 shows how to drive the system from

any given state to any final state. Consider driving the system from (q1, q2, q̇1, q̇2) =

(−1,−π/2, 1, 1) to (2, π/3, 1,−1). To complete this task, we split the trajectory

into two sections: from (−1,−π/2, 1, 1) to xe, named Path A, and from xe to

(2, π/3, 1,−1), named Path Br. Path A can be easily realized with a damping con-

troller uA(t); however, Path Br is not easy to accomplish. Thus, we first need to

design a damping controller uB(t) that can drive the system from (2, π/3,−1, 1) to

xe, which is named Path B. Then using time reversal symmetry and spline interpo-

lation, we can obtain the controller uB(−t) to realize Path Br. Therefore, the total

trajectory is realized by the control uA(t) followed by uB(−t).

6.1.2.2 Swing Up Control of The Pendubot

The pendubot is actuated at the first joint but unactuated at the second one,

which is shown in Figure 6.4. The masses, moments of inertia, link lengths and

distances between center of mass and corresponding joints are m1, I1, l1, and l1c for
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Figure 6.3. Top: trajectory of configuration states. Bottom: trajectory of
velocity states. Paths A and B are realized with damping controllers uA(t)
and uB(t), respectively. Path Br is realized with uB(−t), which exploits the

time reversal symmetry of the system.
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Figure 6.4. The pendubot.
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the first link (actuated) and m2, I2, l2, and l2c for the second link. In simulation, the

two links both have uniformly distributed mass, with m1 = m2 = 1 kg, I1 = I2 =

0.08 kgm2, l1 = l2 = 1 m, and l1c = l2c = 0.5 m. To facilitate further computation,

define:

α1 = m1l
2
1c +m2l

2
1 + I1, α2 = m2l

2
2c + I2, β1 = m2l1l2c.

The dynamics are described by

M11 M12

M21 M22


q̈1
q̈2

+

C1

C2

+

G1

G2

 =

u
0

, (6.17)

where

M11 = α1 M12 = β1 cos(q1 − q2) C1 = β1 sin(q1 − q2)q̇22 C2 = −β1 sin(q1 − q2)q̇21

M21 = M12 M22 = α2 G1 = (m1gl1c +m2gl1)c1 G2 = m2gl2cc2.

Lemma 6.2. Consider a closed-loop system consisting of Equations (6.17) and (6.12).

Starting from any initial condition, the closed-loop solution x(t) = (q1(t); q2(t); q̇1(t); q̇2(t))

approaches a set of equilibrium points as t→∞.

Proof. In this proof, we make an important observation that the solution to the

system can be defined over S× S× R2 rather than R4, with S being the unit circle.

The control input defined in Equation (6.12) can still be applied for the closed-loop

system defined over S× S× R2.

For the mechanical system in Equation (6.17), the total energy is

E(x) =
1

2
q̇TM(q)q̇ + P (q), (6.18)

where x = (q; q̇), q̇TM(q)q̇/2 is the kinetic energy, and P (q) is the potential energy.

Without loss of generality, denote the minimum total energy as Ec (constant) when

128



-4

-2

0

-5

0

5

10

0 5 10 15

-20
0

20
40

-4

-2

0

-10

-5

0

5

0 5 10 15

-20
0

20
40

Figure 6.5. Top: use a damping controller u1(t) to drive the system from
(q1, q2, q̇1, q̇2) = (π/2, π/2, 0, 0) to (−π/2,−π/2, 0, 0). Bottom: apply u1(−t)
to drive the system from (−π/2,−π/2, 0, 0) to near (π/2, π/2, 0, 0), and the
final state is (q1, q2, q̇1, q̇2) = (1.58,−4.69, 0.02, 0.03). Red: q1 or q̇1, blue: q2

or q̇2, green: u1. Also note the period of 2π in computing the angles.
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Figure 6.6. Top: trajectory of configuration states. Bottom: trajectory of
velocity states. Paths A and B are easily realized with a damping

controller uA(t) and uB(t), respectively. Path Br is realized with uB(−t),
which exploits the time reversal symmetry of the system.
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Figure 6.7. Geometric representation of sets in the proof of Lemma 6.2.
The green and red lines represent two trajectories approaching stable and

unstable equilibrium points, respectively.

the two links are at the equilibrium xe = (0s; 0s; 0; 0). The value 0s represents the

states of q when the pendulums point downward. Take the energy function as the

Lyapunov function candidate,

V (x) = E(x)− Ec. (6.19)

The function is positive definite, and V (x) = 0 only when x = xe, i.e., q = 0s, q̇ = 0.

Computing the time derivative of V (x) gives

V̇ (x) = q̇1τ. (6.20)

With the derivative control given in Equation (6.12), we obtain

V̇ (x) = −kdq̇21 ≤ 0, (6.21)

with kd > 0. We are now at the point to prove that starting from any initial condition,
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the closed-loop solution approaches the set of equilibrium points as t→∞.

Suppose x(0) = (q1(0); q2(0); q̇1(0); q̇2(0)), which is randomly picked. The Lya-

punov function evaluated at t = 0 is

V (x(0)) = E(x(0))− Ec. (6.22)

Because in Equation (6.21), V (x) is non-increasing w.r.t. time, the total energy of

the system E(x) is non-increasing such that

E(x) ≤ E(x(0)). (6.23)

Note that

E(x) =P (q) +
1

2
q̇TM(q)q̇

≥−m1lc1g −m2(l1 + lc2)g +
1

2
(I1 +m1l

2
c1

)q̇21 +
1

2
I2(q̇1 + q̇2)

2,

(6.24)

and define a constant C1 = E(x(0)) + m1lc1g + m2(l1 + lc2)g + δ with any δ > 0.

Thus, the velocity states q̇1(t) and q̇2(t) for all t ≥ 0 are bounded within the sets

I1 =

{
q̇1

∣∣∣∣∣|q̇1| ≤
√

2C1

I1 +m1l2c1

}

I2 =

{
q̇2

∣∣∣∣∣|q̇2| ≤
√

2C1

I2
+

√
2C1

I1 +m1l2c1

}
.

(6.25)

For the velocity states out of this bounded set, we can easily derive that E(x) >

E(x(0)), which violates the condition in Equation (6.23) that indicates E(x) is non-

increasing.

Therefore, starting from the initial condition x(0), the solution to the system is
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bounded within a compact set

Br = S× S× I1 × I2.

Let

Ωc = {x ∈ Br|V (x) ≤ V (x(0))} ,

where the solution x(t) stays for all t ≥ 0, because V (x) is non-increasing as in

Equation (6.21). Note that Ωc is closed by definition and bounded since it is contained

in Br; hence, Ωc is a compact set. A geometric representation of the sets is shown in

Figure 6.7.

The set Ωc with V̇ (x) ≤ 0 is positively invariant. Let N be the set of all points

in Ωc where V̇ (x) = 0, and I be the largest invariant set in N . By using LaSalle’s

theorem [60], the solution starting with x(0) ∈ Ωc approaches I as t→∞. Now we

can compute the largest invariant set I in N .

In the largest invariant set I, V̇ (x) = −kdq̇21 = 0 for all t, and thus, q̇1 = 0,

which leads to q̈1 = 0, τ = 0 and q1 is some constant. Substitute the results to

Equation (5.1) and simplify to yield

M12q̈2 + C1 +G1 =0

M22q̈2 + C2 +G2 =0.

(6.26)

By subtracting the second equation in (6.26) from the first, we obtain

β1(c2q̈2 − q̇22s2) + γ1s1 = 0. (6.27)

A key observation is that Equation (6.27) can be rewritten as

β1
d(c2q̇2)

dt
+ γ1s1 = 0. (6.28)
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Thus,

d(c2q̇2)

dt
= −γ1s1

β1
. (6.29)

Note that the RHS of the equation is a constant (denoted as λ1) because q1 is some

constant. Hence,

c2q̇2 = λ1t+ λ2, (6.30)

where λ2 is a constant depending on the initial condition. Since the LHS of Equa-

tion (6.30) is bounded, we require λ1 = 0 to satisfy the equation. Further integrating

Equation (6.30) yields

s2 = λ2t+ λ3. (6.31)

Because the LHS of the equation is bounded, we must have λ2 = 0. Thus, q2 is a

constant, and q̈2 = q̇2 = 0. Substituting the results into Equation (6.26), we obtain

s1 = 0, s12 = 0, (6.32)

which are the equilibrium points. Therefore, the largest invariant set I is

I = {x|s1 = 0, s12 = 0, q̇1 = 0, q̇2 = 0} . (6.33)

Since for any initial condition x(0) ∈ S × S × R2, we can construct the compact

sets Br and Ωc, we conclude that starting from any initial condition, the closed-loop

solution x(t) approaches the invariant set I, which is a set of equilibrium points, as

t→∞.

The pendubot system has four equilibrium states under zero control input. Among

the four equilibrium states, we can easily prove that only one state is stable, and

the other three states are unstable. Therefore, define the stable equilibrium state

(q1, q2, q̇1, q̇2) = (−π/2,−π/2, 0, 0) as the connection point. To swing up the pendubot
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from xe to the upright position (π/2, π/2, 0, 0), we first design a damping controller

u1(t) that drives the pendubot to xe, and then apply u1(−t) (with some position

feedback added) to realize the task. Simulation results are shown in Figure 6.5.

Note that the final reached state is (1.58,−4.69, 0.02, 0.03), which is very close to the

upright position with near-zero velocity. The system can switch to an LQR controller

to stabilize the pendulum about the upright state.

Using xe as the connection point, the pendubot can be driven from any given

state to any final given state. Figure 6.6 provides an example of driving the pendubot

from the state (q1, q2, q̇1, q̇2) = (π/3, π/4, 0.7,−1.2) to (0, 0, 1,−0.5). To accomplish

the task, we first drive the pendubot from (π/3, π/4, 0.7,−1.2) to xe with a damping

controller uA(t). The corresponding trajectory is called Path A. For the next part,

we consider using a damping controller uB(t) to drive from (0, 0,−1, 0.5) to xe, which

is denoted as Path B. We then use time reversal symmetry and spline interpolation

to obtain a controller uB(−t), which can drives the system from xe to (0, 0, 1,−0.5).

We name the corresponding trajectory Path Br. Therefore, the total trajectory is

realized by the control uA(t) followed by uB(−t).

6.1.2.3 The Triple Pendulum

The triple pendulum is actuated only at the first joint but unactuated at the other

two joints, as shown in Figure 6.8. The masses, moments of inertia, link lengths and

distances between center of mass and corresponding joints are m1, I1, l1, and l1c for

link 1, m2, I2, l2, and l2c for link 2, and m3, I3, l3, and l3c for link 3. In simulation,

the three links all have uniformly distributed mass, with m1 = m2 = m3 = 1 kg,

I1 = I2 = I3 = 0.08 kgm2, l1 = l2 = l3 = 1 m, and l1c = l2c = l3c = 0.5 m. Define the
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moments of inertia as follows,

α1 = m1l
2
1c +m2l

2
1 +m3l

2
1 + I1 α2 = m2l

2
2c +m3l

2
2 + I2 α3 = m3l

2
3c + I3

β1 = m2l1l2c β2 = m3l1l2 β3 = m3l2l3c

β4 = m3l1l3c.

Note that this model adopts absolute angle expression. For example, q2 represents

the angle between the horizontal line and the second link. The dynamics can thus be

described by


M11 M12 M13

M21 M22 M23

M31 M32 M33



q̈1

q̈2

q̈3

+


C1

C2

C3

+


G1

G2

G3

 =


τ1

0

0

 , (6.34)

where the mass matrix is symmetric, and

M11 = α1 M12 = (β1 + β2) cos(q1 − q2) M13 = β4 cos(q1 − q3)

M22 = α2 M23 = β3 cos(q2 − q3) M33 = α3

C1 = (β1 + β2) sin(q1 − q2)q̇22 + β4 sin(q1 − q3)q̇23

C2 = −(β1 + β2) sin(q1 − q2)q̇21 + β3 sin(q2 − q3)q̇23

C3 = −β4 sin(q1 − q3)q̇21 − β3 sin(q2 − q3)q̇22

G1 = (m1gl1c +m2gl1 +m3gl1)c1

G2 = (m2gl2c +m3gl2)c2 G3 = m3gl3cc3.

The partial feedback linearization was shown to be able to swing up a triple

pendulum with two actuators and only one degree of unactuation [105, 107]. When

applying the the partial feedback linearization to a triple pendulum with only one

joint actuated, however, it may take an uncertain and long time for the unactuated
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Figure 6.8. Triple pendulum, which is actuated only at the first joint.

links to align with each other, so it cannot guarantee the swing-up for all three links.

Figure 6.9 shows swing-up of a triple pendulum with the global control method

proposed in this section. Given a control period of 40 s, the final reached state is

(q1, q2, q3, q̇1, q̇2, q̇3) = (1.54,−4.68,−4.68,−0.18,0.26,−0.04). Since the triple pendu-

lum with only one actuation is more complex than the pendubot, it is more sensitive

to numerical errors. Therefore, it is not surprising that it requires more time to swing

up the pendulum close to the inverted position with zero velocities.

Further simulations also show that the final state is (2.12, −5.17, −4.54, 2.14,

−3.02, 1.96) when given a control period of 25 s, and when given 60 s, the final state

is (1.57, −4.71, −4.71, −0.00, 0.01, 0.00). This shows that the final deviation error

is smaller when given more time for control. Consider the damping controller that

drives the system from the inverted position to the stable equilibrium point (−π/2,

−π/2, −π/2/, 0, 0, 0). The more time the control u1(t) takes to stabilize the system,

the closer the system can get to xe at the end. Therefore, it is more reliable for u1(−t)

to swing up the pendulum from xe to a neighborhood of the inverted position.

Using the same idea as above and defining xe as the connection point, the triple

pendulum can be shown to be completely controllable. Figures 6.10 and 6.11 give an

example of driving the system from the state (0, 0, 0, 0.8, 0.5, 0.7) to (−π/4, −π/2,

−π/5, −1, −0.8, −0.5).
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Figure 6.9. Top: use a damping controller u1(t) to drive the system from
(q1,q2,q3,q̇1,q̇2,q̇3) = (π/2, π/2, π/2, 0, 0, 0) to (−π/2,−π/2,−π/2, 0, 0, 0).

Bottom: apply u1(−t) to drive the system from (−π/2,−π/2,−π/2, 0, 0, 0)
to near (π/2, π/2, π/2, 0, 0, 0), and the final state is (1.54, −4.68, −4.68,
−0.18, 0.26, −0.04). Red: q1 or q̇1, blue: q2 or q̇2, cyan: q3 or q̇3, green: u1.
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Figure 6.10. Top: trajectory of configuration states q1 and q2. Bottom:
trajectory of velocity states q̇1 and q̇2.
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Figure 6.11. Top: trajectory of configuration states q1 and q3. Bottom:
trajectory of velocity states q̇1 and q̇3.
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6.2 Control of Horizontal Underactuated Pendulums

For pendulum-like robots on a horizontal plane, the linearization is not control-

lable at equilibrium due to the absence of gravity terms in the dynamics, which makes

the global control approach in the preceding section not applicable. There is quite a

bit of work on N -link pendulums on a horizontal plane. As remarked in [15, 26], a

two-link planar horizontal underactuated manipulator is a single-input system, and it

fails to satisfy the sufficient conditions for STLC, which, in some sense, causes more

difficulty to control the two-link than to control an N -link (N ≥ 3) with one unac-

tuated joint. This section presents a polynomial-based feedforward control approach

that can apply for the horizontal case. Control of a horizontal two-link with only the

first joint actuated will be used to illustrate the approach.

6.2.1 Polynomial-based Feedforward Controller Design

The two-link planar horizontal underactuated robot has two possible actuator

configurations as illustrated in Figure 5.1. Review Section 5.1 for the pendubot

model. After simplification with the partial feedback linearization method, we have

q̈1 = u1 q̈2 = − C2

M22

− M21

M22

u1. (6.35)

Let x1 = q1, x2 = q̇1, x3 = q2 and x4 = q̇2, and denote x = (x1, x2, x3, x4) as

the state vector of the system. The objective is to steer the system from some state

xi = [q1i, q̇1i, q2i, q̇2i] to xf = [q1f , q̇1f , q2f , q̇2f ]. Since Equation (6.35) shows that q1

can be directly controlled, the first step is to find an admissible trajectory q∗1(t) that

satisfies

q∗1(0) = q1i, q̇∗1(0) = q̇1i, q∗2(0) = q2i, q̇∗2(0) = q̇2i,

q∗1(T ) = q1f , q̇∗1(T ) = q̇1f , q∗2(T ) = q2f , q̇∗2(T ) = q̇2f .

(6.36)

The second in Equations (6.35) is a second-order nonholonomic constraint of the
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system,

q̈2 = − C2

M22

− M21

M22

q̈1. (6.37)

This represents the internal dynamics of the system, which imply that the final states

q∗2(T ) and q̇∗2(T ) depend on the initial states q∗2(0) and q̇∗2(0). Thus, only six boundary

conditions (BCs) in Equations (6.36) are necessary for the trajectory design of q∗1(t).

We adopt a fifth-order polynomial,

q∗1(t) = p1t
5 + p2t

4 + p3t
3 + p4t

2 + p5t+ p6, (6.38)

where the parameters p = [p1, . . . , p6] are determined by matching the BCs in Equa-

tions (6.36). Optimization is used to find the admissible trajectory. In the following

examples, the model parameters are randomly picked with m1 = 10 kg, m2 = 5 kg,

l1 = 1 m, l2 = 1.5 m, and the mass of the each link is assumed uniformly distributed.

Case I

Consider steering the robot from xi = [0, 0, 0, 0] to xf = [0, 0, π/2, 0] within T =

1 sec, which is a point-to-point control problem with zero velocity at the beginning

and end of the trajectory. Thus, the BCs are

q∗1(0) = 0, q̇∗1(0) = 0, q∗2(0) = 0, q̇∗2(0) = 0,

q∗1(T ) = 0, q̇∗1(T ) = 0, q∗2(T ) = π/2, q̇∗2(T ) = 0.

(6.39)

We design a fifth-order polynomial

q∗1(t) = p1t
5 + p2t

4 + p3t
3 + p4t

2 (6.40)

that satisfies the initial position and velocity requirements for q1, i.e., q∗1(0) = 0 and

q̇∗1(0) = 0. Further, p3 and p4 are determined by p1 and p2 in order to satisfy the BCs

of q∗1(T ) and q̇∗1(T ). The parameters that we need to solve for are p = [p1, p2], which
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should satisfy the position and velocity BCs for the joint q2.

Because Equation (6.37) is not easy to integrate analytically, we seek a numerical

method, which is to solve an optimization problem such that

(p1, p2) = argminp1,p2 J = argminp1,p2 w1(q
∗
2(T )− π

2
)2 + w2q̇

∗
2(T )2, (6.41)

where J is the cost function, and w1 and w2 are weighting coefficients for numerical

errors of position and velocity, respectively. In our case, we take both weighting

coefficients to be one because the numerical errors of position and velocity are equally

important.

We set [−200,−200] and [200, 200] as the searching lower and upper bounds for

the two parameters. A MATLAB function with a multiple-start optimization solver1

is used to search for the parameters. Ideally, if there is a solution inside the searching

region, the cost function J should be zero. Due to the numerical error in integrating

the dynamics, however, we will accept the solution if both the position and velocity er-

rors have an order of magnitude of 10−5 or smaller. Figures 6.12 and 6.13 illustrate the

phase plots and trajectory of a solution with the parameters p = [−3.3022,−9.2201],

which give a position error −3.0 × 10−5 rad and a velocity error 4.1 × 10−5 rad/s

for the joint q2 at the end of the trajectory. Note that the target position with

xf = [0, 0, π/2, 0] is at a singularity, where the system completely loses control au-

thority on the second link. This target position cannot be reached with the nilpotent

approximation and iterative steering method [41].

Case II

Another interesting point-to-point control scenario is to steer the robot from xi =

[0, 0, 0, 0] to xf = [π/2, 0, 0, 0] within T = 1 sec, i.e., rotate the whole robotic arm

by 90 degrees in a counterclockwise direction. With the optimization method, the

1https://www.mathworks.com/help/gads/global-or-multiple-starting-point-search.html
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Figure 6.12. Phase plots of case I, steering the states [q1, q̇1, q2.q̇2] from
[0, 0, 0, 0] to [0, 0, π/2, 0].
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Figure 6.13. State and feedforward control trajectories for case I.
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Figure 6.14. Phase plots of case II, steering [q1, q̇1, q2, q̇2] from [0, 0, 0, 0] to
[π/2, 0, 0, 0].

parameters p = [−76.1190, 151.5385] are obtained, which give a position error −2.7×

10−5 rad and a velocity error −6.2 × 10−6 rad/s for q2 at the end of the trajectory.

The results are shown in Figures 6.14 and 6.15.

Because the control input is derived from the admissible trajectory, it is noted in

Figures 6.13 and 6.15 that the required torques are somewhat large in contrast with

the mass and inertia of the model that we use. For the point-to-point problem, a

time-scaling method can help reduce the control inputs at the cost of lengthening the

total steering time [4]. Details are given as follows.

Assume q∗1(t) = p1t
5 + p2t

4 + p3t
3 + p4t

2 (with the parameters p already obtained

with the optimization technique) is an admissible trajectory to steer the system from

some initial position to a target position within time period T = 1 sec. It can be

shown that

q∗1(κt) = p1(κt)
5 + p2(κt)

4 + p3(κt)
3 + p4(κt)

2 (6.42)

is also an admissible trajectory to steer the system from the same initial position to

the target position within time period T = 1/κ sec. See [4] for proof details. By time-
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Figure 6.15. State and feedforward control trajectories for case II.

scaling the trajectory, the manipulator can follow the same path, with scaled velocity

and acceleration, which requires scaled steering time and control input. Figure 6.16

shows the result for case II with κ = 0.2, which costs 5 sec for the system to steer

from xi = [0, 0, 0, 0] to xf = [π/2, 0, 0, 0]. However, the required control torque τ1 is

much smaller, about 1/25 of the original one as shown in Figure 6.15. The numerical

position and velocity errors for q2 at the end of the trajectory are −2.7 × 10−5 rad

and −1.3× 10−6 rad/s, respectively.

6.2.2 Feedback Control Along the Planned Trajectory

A common issue with feedforward control is a lack of robustness. Under distur-

bance, the model could fail to track the planned trajectory and even diverge from it.

This section discusses a linear feedback control approach combined with the feedfor-

ward control to improve performance.

The system in Equation (6.35) can be formulated as

ẋ = f(x) + g1(x)u1, (6.43)
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Figure 6.16. State and control input trajectories for case II with a scale
ratio κ = 0.2, which can constrain the magnitude of the control input.

where the state vector x = (x1, x2, x3, x4) = [q1, q̇1, q2, q̇2], the drift field f(x) =

(x2, 0, x4,−C2/M22), and the input vector field g1(x) = (0, 1, 0,−M21/M22). Note

that linearization of the overall system is not controllable. Hence, there is no linear

feedback controller to stabilize the overall system around the planned trajectory x∗(t).

Nonetheless, we define an output y = x1 = q1, and the relative degree of the

input-output system is 2. To transfer system (6.43) into an input-output normal

form [57], we make the following coordinate transformation,

ξ1 = x1, ξ2 = x2, η1 = x3, η2 = M21x2 +M22x4, (6.44)

where ξ1, ξ2, η1 and η2 are the new coordinates and the transformation is a diffeo-

morphism. Therefore, the normal form of the system is

ξ̇1 = ξ2 ξ̇2 = u η̇1 =
η2 −M21η1

M22

η̇2 = − β1
M22

sin η1ξ2(η2 −M21ξ2)− β1ξ22 sin η1,

(6.45)
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where β1 is constant and M21 and M22 are the inertia parameters as in Equation (5.1),

depending on ξ1 and η1.

There are two subsystems in Equation (6.45). The dynamics of (ξ1, ξ2) are directly

controlled by the control input, while the dynamics of (η1, η2) are the internal dy-

namics, which are dominated by the states (ξ1, ξ2, η1, η2). Furthermore, when ξ1 = ξ∗1

and ξ2 = ξ∗2 , i.e., the states ξ1 and ξ2 are at some equilibrium, the internal dynamics

construct the zero dynamics of the system, which are neutrally stable (in the sense

of Lyapunov but not asymptotically stable!). We design a LQR controller with

Q =

1000 0

0 1000

 R = 1

to stabilize the states (ξ1, ξ2) around the planned trajectory (ξ∗1 , ξ
∗
2). Because (ξ1, ξ2) is

controllable, we will focus on the stability of (η1, η2). When (ξ1.ξ2) is regulated along

a planned trajectory using the LQR controller, the stability of the zero dynamics will

be shown by using the subsequent simulation.

To compare performance of the two controllers, i.e., a feedforward-only controller

(open-loop) and a feedforward combined with feedback controller (closed-loop), dis-

turbance rejection tests are designed. Without loss of generality, the controller design

u is based on Equation (6.35) in order to simplify computation. Figures 6.17 through

6.20 show the results with disturbances added to q1, q̇1, q2 and q̇2 at the beginning,

respectively.

In Figure 6.17, the open-loop control does not have position feedback, and thus,

there is always an error of 0.1 rad between the nominal and open-loop controlled

trajectory for the position of q1, as shown in the top-left plot. The closed-loop

control can make the actuated joint q1 track the planned trajectories, position and

velocity trajectories very well; however, the joint q2 starts periodic oscillations after

1 sec because the zero dynamics are neutrally stable. In Figure 6.18, given a velocity
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Figure 6.17. Nominal trajectory represents the trajectory with no
disturbance. For open-loop and closed-loop trajectories, the joint q1 is

disturbed by adding 0.1 rad at the beginning. The open-loop trajectory is
controlled with a feedforward controller, while the closed-loop trajectory is

controlled with a feedforward combined with feedback controller.

disturbance at q̇1, the closed-loop controller can still ensure that the joint q1 tracks

the planned trajectory, even though the joint q2 starts periodic oscillations after 1 sec.

In contrast, the open-loop controller loses control on both joints, and the two joints

start oscillating after 1 sec.

In Figures 6.19 and 6.20, the disturbance is added at the unactuated joint. Note

that the two controllers demonstrate the same performance, both losing control of the

joint q2. Therefore, when the disturbance is added at the actuated joint, the closed-

loop control only slightly outperforms the open-loop controller. However, they have

the same performance when the disturbance is added at the unactuated joint. The

fundamental reason for the closed-loop controller only slightly outperforming the

open-loop one is, the zero dynamics of the system is neutrally stable.

149



0 1 2 3
-2

0

2

0 1 2 3

-5

0

5

10

0 1 2 3

-2

0

2

0 1 2 3
-20

-10

0

10

Figure 6.18. The velocity q̇1 is disturbed by adding 0.1 rad/s at the
beginning.
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Figure 6.19. The joint q2 is disturbed by adding 0.1 rad at the beginning.
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Figure 6.20. The velocity q̇2 is disturbed by adding 0.1 rad/s at the
beginning.

6.2.3 Discussion

The polynomial-based feedforward control method in this section starts with de-

termining admissible trajectories for the directly controlled joints and then reversely

solves for the control inputs. Note that this section focuses on the control problem of

a classical 2R underactuated manipulator, i.e., steering from a state to another state

(in the joint space). For robotic applications, the concept of a “joint velocity pro-

file” can be controlled by the design of joint position trajectories. The method can be

adapted to solve the end-effector position control problem (operational space control)

in that there exists a clear relationship between the joint positions and end-effector

positions.

The method can be implemented on more complicated underacted mechanical

systems, such as a three-link. Position-to-position control for a three-link horizontal

manipulator (RRR) with only the last joint unactuated has been successfully achieved

by applying this method. However, when there are more degrees of unactuation, more

parameters need to be determined for the admissible trajectory, which would augment

151



the searching dimension in the optimization procedure and cause difficulty of finding

a solution. In other words, the method may suffer the curse of dimensionality.

Moreover, the method is only applicable for controllable systems. For a class

of UMS such as the hovercraft, controllability is generally related to the fact that

the nonholonomic constraints are not integrable [88]. We tested the method on an

acrobot (see Figure 5.1), which is known to not be controllable, and the objective

was the same as for case I. Hence, the optimization problem can be formulated as

(p1, p2) = argminp1,p2 J = argminp1,p2 w1q
∗
1(T )2 + w2q̇

∗
1(T )2, (6.46)

where w1 and w2 are weighting coefficients.

We simply take w1 = 1 and w2 = 1. The optimization method, however, cannot

return a near-zero cost. Instead, it always returns a constant 0.3218. The reason

is that the second-order nonholonomic constraint for the acrobot is completely inte-

grable when starting from some equilibrium position [26], so the system is constrained

to move on a 2-dimensional manifold. Thus, for any pair (p1, p2), the cost in Equa-

tion (6.46) is fixed because the final position and velocity for the unactuated joint

q1 are fixed when the initial states for the two joints and the final states for the

actuated joint q2 are given. In the task of case I, for example, given π/2 and 0 rad/s

as the target position and velocity for q2, it can be analytically computed that the

position and velocity for q1 at the end of the trajectory are −0.5673 rad and 0 rad/s,

respectively, which leads to the cost J = (−0.5673)2 = 0.3218.

Note that the method is to solve a control problem rather than the stabilization

problem. The preceding feedback controller uses input-output linearization, where

the actuated joint q1 is the output, to design a feedback controller combined with

the feedforward control so as to improve the control performance. It shows that the

closed-loop controller only slightly outperforms the open-loop controller when the
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disturbance is added to the actuated joint. We also tested another feedback approach,

which enforces that the trajectory follows a relationship between q1 and q2 [4]. This

approach requires that q1(t) be a monotonic function. However, it does not work well

due to the singularity issue with M21/M22 + dq2/dq1 in computing the control input.

Moreover, the zero dynamics for the system in Equation (6.45) are neutrally stable,

and thus, this approach may not be able to guarantee the performance for both joints

under disturbance.

6.3 Summary

This chapter presents control methods for a class of UMS [22, 23]. First, it

presents a simple approach to control UMS with potential energy. By using Lya-

punov’s method, it is shown that a damping controller can drive the system to an

invariant set with the actuated velocity to be zero. Further analysis shows that

the controller may even drive the system to an equilibrium point, such as for the

gymnastics robots and the cart-pole system.

By exploiting the time reversal symmetry of mechanical systems and spline inter-

polation, an open-loop controller based on the damping controller can be obtained

to drive the system from a stable equilibrium point to all other states. Therefore,

using the stable equilibrium as a connection point, this class of systems are shown to

be completely controllable, i.e., there exists an admissible trajectory from any given

state to any given final state.

Secondly, this chapter presents a polynomial-based feedforward method for a two-

link planar horizontal robot with only the first joint actuated, which cannot be con-

trolled with the preceding global control approach. The new method designs an

admissible polynomial-based trajectory for the directly controllable state, which sat-

isfies the constraints of model dynamics and boundary value conditions, and then

reversely solves for the feedforward controller. A time-scaling method can be used to
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adjust the control inputs at the cost of lengthening the steering time.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation studies control of underactuated mechanical systems (UMS)

with a focus on application to bipedal robots. In the control aspect, it exploits Lie

brackets to study controllability and accessibility for an N -link serial robot model,

with different actuator configurations considered. For example, a two-link pendubot

is accessible from almost any state but does not satisfy the sufficient conditions for

STLC from [113]. In contrast, a two-link acrobot is not accessible from any state,

which is due to the angular momentum conservation. As for an N -link (N ≥ 3)

manipulator with one unactuated joint, the manipulator with the first joint actuated

is accessible from almost any state and STLC from a subset of equilibrium points.

If the unactuation occurs at the first joint, the model is neither accessible nor STLC

from any state, and the form of the state manifold for such a system is also given. In

this work, the full detailed dynamics to the controllability analysis has been worked

out, which turns out to give relatively simple forms for some nontrivial Lie brackets.

The expressions of these nontrivial Lie brackets (vector fields) enable us to determine

at which configurations the model may lose full rank condition for accessibility.

This dissertation also provides a general approach to achieve global control of

UMS by using the time reversal symmetry of mechanical systems and a damping

controller. By using the approach, underactuated pendulums with one degree of

unactuation can be shown to be almost globally controllable by following the same

line with Lyapunov’s method. For horizontal underactuated pendulums where this

method does not apply, a polynomial-based feedforward control method has been
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developed to achieve the control. The basic idea is to first determine an admissible

trajectory that satisfies both the constraints of the system dynamics and the bound-

ary value conditions and then design a feedforward controller for the system. To

further improve the robustness of the controller, feedback control along the planned

trajectory is discussed.

Another focus of this dissertation is control of underactuated bipeds. An HZD-

based control method has been developed for ankle-actuated bipeds to help under-

stand ankle actuation, which plays an important role in balance of locomotion. In

contrast with hip actuation by using the same model and control approach, ankle ac-

tuation is more robust in terms of disturbance rejection ability but less energetically

efficient. Moreover, ankle actuation requires certain foot size in order to transfer the

ankle torque to the ground and maintain the stability of biped walking.

Inspired by [86] that focuses on determining controllability conditions for UMS

starting from non-zero velocity, this dissertation applies the velocity decomposition

technique to underactuated bipeds. By decomposing the velocity field of the un-

deractuated biped into actuated and unactuated directions, which correspondingly

generates actuated and unactuated velocities, it is shown that the unactuated velocity

is coupled with the actuated velocity. Because the actuated velocity can be directly

controlled with control input, the unactuated velocity can be indirectly controlled

through the coupling with the actuated velocity. Based on this idea, the dissertation

has developed a coupling metric that can be used to measure the robustness of gaits

for biped robots. Robust gaits tend to have small coupling under zero disturbance

so that the “reserve” coupling may be utilized to reject the disturbance. Therefore,

search for robust gaits should be focused on the gaits with small coupling.

The final topic in the control of underactuated bipeds is biped walking on slippery

surfaces. This dissertation relaxes the assumption that there is no slip between

the stance foot and ground and undertakes a comprehensive study of the compass
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gait biped on slippery ground. It has developed a biped model that allows for foot

slipping, and revealed the failure reasons for biped walking on slippery ground. To

characterize a robust gait on slippery ground, three safety factors are proposed to

measure the robustness: slip friction, falling friction and tolerance ability of slipping

without falling. These factors are used to investigate the independent influences of

gait speed and step length on the robustness of the gait. Gaits with small step length

and moderate speed are robust and preferable on slippery surfaces. In contrast, gaits

with large step length generally are not suitable for walking on slippery surfaces.

These results are consistent with human locomotion studies, which indicate that

shorter step length can improve stability against slip-related falls, while a very slow

gait seems not to help much in improving the walking stability [44]. Moreover, gaits

with a backward swing foot velocity relative to the ground just before touch down

(swing-leg retraction) are generally more robust than ones with a forward velocity.

Simulations of simple biped models with varying parameters, such as mass, leg

length, location of CoM, can also give some insights into the design of bipeds. By

studying ankle-actuated bipeds, it is found that longer leg length can generate larger

speed, while changing mass of the model has nearly no effect on the walking speed.

Lowering the CoM of the model can give more robustness because the disturbance-

related torque w.r.t. the ankle for the model with lower CoM is smaller. In the study

of biped walking on slippery surfaces, it shows that the model with very low CoM

requires large slip and falling friction, which can be due to the large effect at touch

down. An optimal ratio of CoM location over leg length for the biped walking on

slippery ground should be at some point between 0.8 and 0.85.

Figure 7.1 illustrates some connections among different threads of this disser-

tation. On one hand, control of UMS has been a challenging problem due to the

nonlinearity and underactuation of systems. For some applications such as bipeds,

hybrid-system property and practical constraints need to be considered, which fur-
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Figure 7.1. Summary of this dissertation and some potential future work.

ther complicate such control problems. Geometric nonlinear control thus paves a

natural path to solve the problems because control of the systems can be treated

as controlled flows on configuration and velocity manifolds, which, loosely speak-

ing, are curved spaces. For UMS, the velocity field on the configuration manifold

can be decomposed along actuated and unactuated directions. Previous results have

proved that the velocity component along the unactuated direction, which we also

call unactuated velocity, is not directly influenced by the control inputs [86]. How-

ever, derivative of the unactuated velocity w.r.t. the time shows that the unactuated

velocity can be influenced through the coupling with the actuated velocity. Thus, the

coupling terms provide a measure of control authority for UMS, and it is natural to

extend the coupling terms to study nonlinear controllability and robustness of UMS.

On the other hand, the underactuated biped makes a very promising solution to

balance the competing issues of energy efficiency and robustness for bipedal walking

robots; however, the robustness of the underactuated biped is still somewhat limited.
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This thus inspires the use of the coupling to guide robust design of underactuated

bipeds via improving control strategy and optimizing model parameters, which is

also the initial motivation of this dissertation, as represented by intersection A in

Figure 7.1. Interestingly, simulations suggest that there exists strong negative corre-

lation between the coupling strength and robustness of bipeds, where the maximum

rejected disturbance was used as a measure of robustness for the bipeds.

Note that the relationship between the coupling and robustness is based upon

simulations. A natural extension would be to formally establish this relationship by

connecting the coupling with classical nonlinear control theory, which thus motivates

the research lying in intersections B and C. The nonlinear mechanical coupling is

derived from velocity decomposition on a configuration manifold (geometry), and

moreover, simple computation indicates that the unactuated directions are closely

related to the control vector fields for UMS. Therefore, in intersections B and C,

some notions and computation from geometric nonlinear control, such as drift field,

control vector fields and Lie algebraic computation, are largely involved. As for

theoretical models in the research, pendulums have been adopted for most parts

because 1) pendulums have been widely studied in nonlinear control theory, and 2)

pendulums are commonly used as simple models for biped robots. For example, from

the perspective of actuator configurations, the pendubot corresponds to an ankle-

actuated biped, and the acrobot corresponds to a hip-actuated biped.

In intersections B and C, nonlinear controllability for general underactuated

pendulums was derived, and some controllers based on time reversal symmetry or

polynomial-path planning were proposed to control a class of UMS. These results

are applicable to continuous dynamical systems. Controllability results are also very

important for bipeds. However, the aforementioned results are not directly applicable

because biped walking is a hybrid system with practical constraints such as unilateral

ground reaction force. In order to extend those results to bipeds, as in intersection
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D, many interesting research questions can be generated, such as controllability with

unilateral control inputs, time reversal symmetry in hybrid systems etc. Among those

questions, some have been studied and some are still open [49].

Back to the robustness of biped, an extended definition of robustness also means

the ability of a biped to handle some unmodeled (uncertain) dynamics, such as slip-

ping on slippery surfaces. This is very important since the ultimate goal is to have a

biped stably walking on a variety of terrains. Thus, intersection E focuses on biped

walking on slippery surfaces, which characterizes robust gaits on slippery surfaces

and provides some insights into gait and model design.

Based upon the results in this thesis, there are several avenues of potentially

fruitful further work, from the aspects of both geometric nonlinear control theory

and biped robots.

1. In intersections A and E, the robustness of bipeds is defined by using different

measures: one is the maximum rejected disturbance on the unactuated joint, and

the other is related to the required friction to maintain no-slip or stable walking.

It is unknown whether the two groups of robust gaits, from different measures, are

correlated. Because the coupling strength is strongly correlated with the maximum

rejected disturbance of a gait, a useful extension is to verify whether the coupling

can also be exploited in designing robust gaits on slippery surfaces.

2. While there is strong correlation between the robustness and the coupling

for UMS based on numerical simulations, a formal connection between the two is

still unclear. Moreover, nonlinear controllability for systems starting with nonzero

velocities is still an open problem, and the coupling provides a promising tool to

tackle this problem.

3. In intersections B and C, the controllers based upon the time reversal symmetry

are restricted to continuous dynamical systems. To apply such a method to biped

walking to rapidly generate “backward walking” gait, we will need to study the time
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reversal property for hybrid systems. Moreover, some physical constraints such as

friction and unilateral ground reaction force need to be considered to improve the

method. Similarly, the polynomial-based control for horizontal pendulums can be

extended to design novel controllers for biped robots by incorporating the practical

constraints. Because of the gravity effect on biped walking, the linearization of the

biped model around a planned trajectory is controllable, so feedback control in this

scenario can be used to improve the robustness of the system.

4. In intersections B and C, the nonlinear controllability results for N -link un-

deractuated pendulums can also be extended to solve a motion planning problem. A

differential geometric approach for systems without drift was presented in [64], which

realized the motion planning by execution of Lie brackets. For systems with drift, it

is suggested that a good bracket is an executable bracket by rearranging the order

of the vector fields and thus avoiding the effect of negative drift that is not feasible

[49]. Therefore, we can study the execution of the good brackets and how to “break

and patch” the brackets to compute a feasible control input for motion planning

problems, which can be applied to manipulation under constrained environment.

5. In the aspect of biped robots, a promising direction is to study biped walking

on slippery surfaces. Intersection E presents some preliminary results of a compass

gait biped walking on slippery surfaces. There are still many open problems to

solve, such as the applicability of results for more complicated biped models (3D

bipeds). Current results were obtained by applying HZD-based control approach

without leveraging any slipping information. Therefore, how to detect when slips

happen and how to use the information of slipping to improve biped walking are still

open problems. These problems are very useful for building robust bipeds, and they

can also contribute to improving existing exoskeletons and powered prostheses.

6. The major challenge for biped robots is to have a biped that can adapt to

various complex terrains as humans can. Current study of the robustness of bipeds
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in this dissertation focuses on fundamental control problems, which is based upon

blind-walking. To achieve fully autonomous walking, perception and planning are

also required. Moreover, the coupling is applicable to a general UMS, and thus,

another extension is to apply the coupling to study manipulation problems, which

also shares some dynamics in common with biped locomotion because both problems

are about making and breaking contacts.
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APPENDIX A

NONLINEAR MOTION PLANNING

In this appendix, we introduce some of the general approaches to nonlinear motion

planning for kinematic systems described by Equation (2.13). The first approach is

using sinusoidal inputs to steer chained form systems.

The use of sinusoids is motivated by the results of Brockett in the context of

optimally steering a class of systems with zeroth-order and first-order Lie brackets to

span the tangent space to the manifold M . For example, consider a system described

by Equation (2.13), we have

TxM = span{gi, [gj, gk] : i, j, k = 1, . . . ,m}.

The system is also called the first-order controllable system (because the required

largest order of Lie brackets is 1). In particular, we consider a very important class

of first-order controllable systems in the form (also known as Brockett’s system),

q̇i = ui i = 1, . . . ,m

q̇ij = qiuj − qjui i < j = 1, . . . ,m.

(A.1)

To control such systems, we can use the following steering algorithms, which apply

sinusoidal inputs. Details and proof can be found in [11].

1. Steer the qi to their desired values using any input and ignoring the evolution
of the gij.

2. Using sinusoids at integrally related frequencies, find u0 such that the input
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steers the qij to their desired values. By the choice of input, the qi are un-
changed.

The sinusoidal inputs can be generalized to higher-order controllable systems. In

full reality, however, it is difficult to apply the method to high-order systems because

of the delicacy and complexity in selecting the input frequencies to steer “high-order

states” such as qijk etc. Thus, we will focus on a smaller class of higher-order systems,

which we refer to as chained systems.

We start with a two-input system (one chain system),

q̇1 = u1

q̇2 = u2

q̇3 = q2u1

q̇4 = q3u1

...

q̇n = qn−1u1.

(A.2)

In vector form, Equation (A.2) becomes q̇ = g1u1 + g2u2 with

g1 =



1

0

q2

q3
...

qn−1


g2 =



0

1

0

0

...

0


. (A.3)

It can be readily proved that the system (A.2) is controllable because there are n

Lie brackets

{g1, g2, adig1 g2} 1 ≤ i ≤ n− 2
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are independent. To steer such system, we can use the following algorithm which

applies sinusoids at integrally related frequencies. The proof can be found in [81].

1. Steer q1 and q2 to their desired values.

2. For each qk+2, k ≥ 1, steer qk+2 to its final value using u1 = a sin 2πt, u2 =
b cos 2πkt, where a and b satisfy

qk+2(1)− qk+2(0) =
( a

4π

)k b
k!
.

All previous states return to their starting values.

For the systems with more than two inputs, which is also called multi-chained form

systems, we refer readers to [80].

In real applications, many systems do not have the forms of model control systems,

such Brockett’s system and chained form systems. We need some techniques in

motion planning for more general systems. The following will present two techniques,

Fourier techniques and piecewise constant inputs to steer a general system. Examples

will be given to illustrate these ideas.

Example A.1 (Steering the kinematic car with Fourier techniques). Consider a

kinematic car in Figure A.1. Let (x, y, θ, φ) denote the configuration of the car,

parameterized by the xy location of the rear wheels, the angle of the car body w.r.t.

the horizontal, θ, and the steering angle w.r.t. the car body, φ. Choose the driving

velocity u1 and the steering velocity u2 as inputs, the system can be modeled by



ẋ

ẏ

θ̇

φ̇


=



cos θ

sin θ

1
l

tanφ

0


u1 +



0

0

0

1


u2. (A.4)

The system can be shown controllable by checking Lie brackets. To steer the

kinematic car, the model in Equation (A.4) does not have the chained form. Thus,
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we use a change of coordinates z1 = x, z2 = φ, z3 = sin θ, z4 = y, and a change of

inputs v1 = cosu1, v2 = u2 to put the model in the form

ż1 = v1

ż2 = v2

ż3 =
1

l
tan z2v1

ż4 =
z3√

1− z23
v1.

(A.5)

Equation (A.5) looks to have a one-chained form system with 4 states, because

the linear terms in the Taylor series expansions of the nonlinearities in the last two

equations match the terms of the one-chain form. Using this as justification, we

attempt to use the algorithm for steering chained form systems to steer this system.

We can use Fourier series to handle the effect of the nonlinear terms.

We first steer z1 and z2 to their desired values. Then, we use sinusoids

u1 = a1 sin 2πt u2 = a2 cos 2πt

to steer z3 (= sin θ). After one period (1 sec), the values z1 and z2 return to the

initial values. During this period, z2 = a2 sin 2πt/(2π), and thus we can expand the

nonlinear term associated with ż3 by using Fourier series

1

l
tan z2 =

1

l
tan
( a2

2π
sin 2πt

)
= β1 sin 2πt+ β2 sin 4πt+ · · ·

where β1 and β2 are Fourier coefficients, which depend on a2. Direct integration gives

z3(1)− z3(0) =

∫ 1

0

(a1β1 sin2 2πt+ a1β2 sin 2πt sin 4πt+ · · · )dt =
1

2
a1β1.

Therefore, we can solve for a1 and a2 numerically to achieve a net change in z3.
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Figure A.1. Kinematic car.

Similarly, we can steer z4 (= y) by using u1 = b1 sin 2πt and u2 = b2 cos 4πt. After

one period (1 sec), the control inputs do not affect the final values of z1 and z2, but

there exists small displacement error for z3 because of the nonlinear terms associated

with ż3. In Fourier series expansion for tan z2/l, the term with sin 4πt can generate

nonzero change for z3 in the integration.

Another method for motion planning for general nonholonomic systems is given

by Lafferriere and Sussmann [64]. The algorithm works exactly for nilpotent systems

whose controllability Lie algebra is nilpotent of order k, and approximately for sys-

tems which are not nilpotent. For non-nilpotent systems, arbitrary precision can be

obtained by iterating the algorithm. The method is conceptually straightforward but

the details of it are somewhat involved. See [64, 81, 51].

We first define the formal exponential of gi:

etgi(x) := φgit (x),

and note φg2ε ◦ φg1ε (x) := eg1eg2(x). The formal exponential has the following identity

167



property

etgi = I + tgi +
t2

2!
g2i + · · · ,

where polynomials like g2i and g3i need to be carefully justified. Then we define the

Philip Hall basis generated by g1, . . . , gm to be b1, b2, . . . , bs so that dim(span{b1, . . . , bs}) =

dim(M). The original system described in Equation (2.13) is thus extended to a form

ẋ = v1b1(x) + · · ·+ vmbm(x) + vm+1bm+1(x) + · · ·+ vsbs(x), (A.6)

where vi’s are called fictitious inputs since they may not correspond with the actual

system inputs. The control inputs vi which steer the extended system can be found

as follows. To steer from a point p to a point q, define a curve, γ(t) connecting p and

q (a straight line or any curves for obstacle avoidance would work). Having chosen

γ, simply solve

γ̇ (t) = v1 (t) b1 (γ (t)) + · · ·+ vs (t) bs (γ (t)) (A.7)

for the fictitious controls vi by inverting a square matrix (if s = n) or computing a

pseudo-inverse. The next step is to use vi to find actual control ui that steers p to q.

It is a basic result of nonlinear control that all flows of the nonlinear control

system in Equation (2.13) are of the form

St(x) = ehs(t)bsehs−1(t)bs−1 · · · eh2(t)b2eh1(t)b1(x) (A.8)

for some functions h1, h2, . . . , hs, known as (backward) Philip Hall coordinates. The

essential idea of Equation (A.8) is that all possible flows may be obtained by com-

posing flows along the Philip Hall basis b1, . . . , bs. Note that the difference between

Equation (A.6) and (A.8) is that (A.6) requires the simultaneous execution of con-

trol inputs vi, which is impossible because some “directions” are constructed by other

vector fields, while (A.8) provides a step-by-step execution of controls, for example,
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move along direction bs with the control input us = sgn(hs) for time 0 < t ≤ |hs|,

and then move along bs−1 and so on.

Furthermore, St(x) satisfies a differential equation involving the basis elements,

Ṡ(t) = S(t)(b1v1 + · · ·+ bsvs) S(0) = 1, (A.9)

where S(t) has replaced St(x), and vi are the fictitious inputs as in Equation (A.6).

This equation is called the “formal extended equation”. Differentiating Equation (A.8)

w.r.t. time t yields

Ṡ(t) =
s∑
j=1

ehsbs · · · ehjbj ḣjbjehj−1bj−1 · · · eh1b1

=
s∑
j=1

S(t)e−h1b1 · · · e−hj−1bj−1ḣjbje
hj−1bj−1 · · · eh1b1

:=
s∑
j=1

S(t) Ade−h1b1 ···e−hj−1bj−1 ḣjbj,

(A.10)

where Ad is an adjoint mapping such that

Ade−hibi bj = e−hibibje
hibi .

It can be further shown for each element j in Ṡ(t) that

Ade−h1b1 ...e−hj−1bj−1 ḣjbj =

(
s∑

k=1

pj,k(h)bk

)
ḣj.

Now, we equate coefficients of the basis elements bi in Equations (A.9) and (A.10)

and this yields
s∑
j=1

pj,k(h)ḣj = vk k = 1, . . . , s.
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These equations can be rearranged to solve the differential equation

ḣ = Q(h)v h(0) = 0,

which specifies the evolution of Philip Hall coordinates hj in response to the fictitious

inputs v1, . . . , vs. With the coordinates in Equation (A.8), we can solve for the real

control inputs ui by manipulating Lie brackets. However, it is easier to determine

the real inputs using the forward Philip Hall coordinates, in the following form

S = eh̃1b1eh̃2b2 · · · eh̃s−1bs−1eh̃sbs . (A.11)

The transformation from backward coordinates in Equation (A.8) to forward coor-

dinates in (A.11) can be achieved by equating them and using the Campbell-Baker-

Hausdorff formula in Equation (2.10). Details can be found in [51].

Example A.2 (Two-Input Nilpotent System). Consider a two-input system that is

nilpotent of degree three,

ẋ = g1(x)u1 + g2(x)u2,

with an extended system

ẋ = v1b1(x) + v2b2(x) + v3b3(x) + b4v4(x) + b5v5(x),

where

b1 = g1, b2 = g2, b3 = [g1, g2], b4 = [g1, [g1, g2]], b5 = [g2, [g1, g2]].
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The coefficients of the ḣj on the right-hand side of Equation (A.10) are given by

ḣ1 : B1

ḣ2 : B2 − h1B3 +
1

2
h21B4

ḣ3 : B3 − h2B5 − h1B4

ḣ4 : B4

ḣ5 : B5.

For example, the coefficient of ḣ2 is calculated as

Ade−h1B1 B2 = B2 − h1[B1, B2] +
1

2
h21[B1, [B1, B2]]

= B2 − h1B3 +
1

2
h21B4.

Equating the coefficients of the bi to vi, we obtain

b1 : v1 = ḣ1

b2 : v2 = ḣ2

b3 : v3 = −h1ḣ2 + ḣ3

b4 : v4 =
1

2
h21ḣ2 − h1ḣ3 + ḣ4

b5 : v5 = −h2ḣ3 + ḣ5.

Rearranging the equations to get

ḣ1 = v1

ḣ2 = v2

ḣ3 = h1v2 + v3

ḣ4 =
1

2
h21v2 + h1v3 + v4

ḣ5 = h1h2v2 + h2v3 + v5.
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with initial condition h(0) = 0.

We can solve the backward Philip Hall coordinates hj and transfer them to the

forward coordinates h̃j, which can then be used to solve the real inputs.
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APPENDIX B

NONLINEAR MECHANICAL COUPLING FOR BIPEDS

This appendix illustrates the plots for two-link, ankle-actuated models that vary

parameters relative to the nominal model Model-0. The variations along three di-

mensions are considered, i.e., leg masses, leg lengths, and positions of the COM in

the legs. Model-1a and Model-1b represent models with varying masses. Model-2a

and Model-2b represent models with varying leg lengths. Model-3a and Model-3b

represent models with varying positions of the CoM in the legs. Refer to Table 3.1

for model parameters in detail. Besides the main results given in previous sections

that are consistent across the seven models, the following results are obtained by

comparing the differences among these models.

First, the influence of varying model parameters on the walking speed of the gaits

can be obtained by comparing Figure 3.7 and 3.8. For Model-0, the gaits has 0.31 m/s

as a median speed. As for Model-2a with smaller leg lengths, the median speed of

the gaits is 0.23 m/s, and for Model-2b with larger leg lengths, the median speed is

0.40 m/s. It makes sense that a model with longer legs can walk faster in general.

In contrast, for Model-1a and Model-1b that vary masses relative to Model-0, the

median speeds of the gaits for them are all 0.31 m/s, which implies that varying the

mass of the model has nearly no influence on the walking speed. The interpretation

of these results can be related with human walking, i.e., a human with longer legs

walks faster, however, a human with larger mass can walk as fast as a human with

smaller mass (the same leg lengths for both), only if the former provides enough

energy to support the fast walking.
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By the comparison between Figure 3.7 and 3.8, it is also noted that the feasible

gaits are more diversely distributed in speed range if the model has lower positions

of the CoM in the legs. When increasing the positions of the CoM in legs from

lc = 0.78 m to lc = 0.82 m, the speed range of the feasible gaits decreases from

0.1–0.9 m/s to 0.2–0.35 m/s. If increasing the positions of the CoM in legs from

lc = 0.82 m, the speed range of the feasible gaits should get further contracted.

Simulations also show that the feasible gait region shrinks at the same time, and

there will exist no more feasible gaits for the model when lc = 0.85 m/s.

Secondly, relationships between coupling strength and certain model parameter(s)

can be obtained from the comparison of plots in Figure 3.12. Figures 3.12a and 3.12b

display the mechanical coupling of gaits for models with varying leg masses, and

show that the coupling strength is affected by the masses. More specifically, for the

same gait, a model with larger leg mass has larger coupling strength. In contrast,

Figures 3.12c and 3.12d suggest that the maximum coupling strength that a model

can provide is largely unrelated to leg length. Because the variation range on the

position of the CoM in the legs is small, the maximum coupling strengths are very

close for the models with varying positions of the CoM by comparing Figures 3.12e

and 3.12f.

Lastly, an observation from Figure 3.13 and 3.14 concerns the relationship between

the robustness and model parameters. For Model-0, the range of RoA for the feasible

gaits is 0–3.65 rad/s. For Model-2a with shorter legs, the range is 0–5.45 rad/s. For

Model-2b with longer legs, the range is 0–2.85 rad/s. It implied that the robot with

shorter legs is more robust in some sense. Furthermore, for Model-3a with lower

positions of CoM, the range is 0–3.75 rad/s. For Model-3b with higher positions

of CoM, the range is 0–3.6 rad/s. Hence, a design of lower CoM provides more

robustness for a biped.
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Figure B.1. Candidate gait regions for models with varying parameters.
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Figure B.2. Feasible gait regions for models with varying parameters.
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Figure B.3. Relationships among the required minimum foot size, friction
coefficient and CoT of a gait, for models with varying parameters.
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Figure B.4. Maximum positive torques (blue) and maximum negative
torques (red) of all feasible gaits, normalized by mass, for models with

varying parameters.
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Figure B.5. Relationship between the RoA and coupling strength for
models with varying parameters. The six figures have the same x- and y-

axes as Figure 3.9.
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Figure B.6. Correlation of RoA at any two instants for models with varying
parameters. The six figures have the same x-, y- and z- axes as Figure 3.10.
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APPENDIX C

DETAILED EQUATIONS FOR BIPED WALKING ON SLIPPERY GROUND

Model parameters in Equation (4.2) are

D0 =

D01 D02

D03 D04

 C0 =

C01 C02

C03 C04

 G0 =

G01

G02

 B0 =

1

0

 ,
where D0 is symmetric, and

D01 =J +m(l − lc)2 D02 = −J −m(l − lc)(l − lc − l cos q1)

D04 =2J +ml2c +m(l2 + (l − lc)2 − 2l(l − lc) cos q1)

C01 =0 C02 = −ml(l − lc) sin q1q̇2

C03 =−ml(l − lc) sin q1(q̇1 − q̇2) C04 = ml(l − lc) sin q1q̇1

G01 =mg(l − lc) sin(q1 − q2)

G02 =−mg(l sin q2 + lc sin q2 + (l − lc) sin(q1 − q2)).

Model parameters in Equation (4.3) are

Ds =


Ds1 Ds2 Ds3

Ds4 Ds5 Ds6

Ds7 Ds8 Ds9

 Cs =


Cs1 Cs2 Cs3

Cs4 Cs5 Cs6

Cs7 Cs8 Cs9

 Gs =


Gs1

Gs2

Gs3

 Bs =


1

0

0

 Bf =


0

0

1

 ,
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where Ds is symmetric,

Ds1 =J +m(l − lc)2 Ds2 = −J −m(l − lc)(l − lc − l cos q1)

Ds3 =m(l − lc) cos(q1 − q2) Ds5 = 2J +ml2c +m(l2 + (l − lc)2 − 2l(l − lc) cos q1)

Ds6 =−m(l − lc) cos(q1 − q2) +m(l + lc) cos q2 Ds9 = 2m

Cs1 =0 Cs2 = −ml(l − lc) sin q1q̇2 Cs3 = 0

Cs4 =−ml(l − lc) sin q1(q̇1 − q̇2) Cs5 = ml(l − lc) sin q1q̇1 Cs6 = 0

Cs7 =−m(l − lc) sin(q1 − q2)q̇1 + 2m(l − lc) sin(q1 − q2)q̇2

Cs8 =−m(l − lc) sin(q1 − q2)q̇2 −m(l + lc) sin q2q̇2 Cs9 = 0

Gs1 =mg(l − lc) sin(q1 − q2) Gs2 = −mg(l sin q2 + lc sin q2 + (l − lc) sin(q1 − q2))

Gs3 =0.

Model parameters in Equation (4.7) are

De =



D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44


,

where De is a symmetric matrix with

D11 =J +m(l − lc)2 D12 = −J −m(l − lc)(l − lc − l cos q1)

D13 =m(l − lc) cos(q1 − q2) D14 = m(l − lc) sin(q1 − q2)

D22 =2J +ml2c +m(l2 + (l − lc)2 − 2l(l − lc) cos q1)

D23 =m(l cos q2 + lc cos q2 − (l − lc) cos(q1 − q2))

D24 =−m(l sin q2 + lc sin q2 + (l − lc) sin(q1 − q2))

D33 =2m D34 = 0 D44 = 2m.
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APPENDIX D

DETAILED EQUATIONS FOR HORIZONTAL THREE-LINK MODELS

The horizontal three-link model (see Figure 5.2) adopts relative angle expression,

for example, q2 represents the angle between links 1 and 2. To facilitate the model

expressions, denote

α1 = m1l
2
1c +m2l

2
1 +m3l

2
1 + I1 α2 = m2l

2
2c +m3l

2
2 + I2

α3 = m3l
2
3c + I3 β1 = m2l1l2c

β2 = m3l1l2 β3 = m3l2l3c β4 = m3l1l3c.

Configuration 1

The dynamics are described by


M11 M12 M13

M21 M22 M23

M31 M32 M33



q̈1

q̈2

q̈3

+


C1

C2

C3

 =


τ1

τ2

0

 , (D.1)

where the mass matrix is symmetric, and

M11 = α1 + α2 + α3 + 2β1c2 + 2β2c2 + 2β3c3 + 2β4c23 M22 = α2 + α3 + 2β3c3

M12 = α2 + α3 + (β1 + β2)c2 + 2β3c3 + β4c23 M23 = α3 + β3c3

M13 = α3 + β3c3 + β4c23 M33 = α3.
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and the Coriolis terms are

C1 = −(2q̇1 + q̇2)q̇2(β1 + β2)s2 − β3(2q̇1 + 2q̇2 + q̇3)q̇3s3

− β4(q̇2 + q̇3)(2q̇1 + q̇2 + q̇3)s23

C2 = q̇21((β1 + β2)s2 + β4s23)− 2β3q̇1q̇3s3 − 2β3q̇2q̇3s3 − β3q̇23s3

C3 = q̇21(β3s3 + β4s23) + 2q̇1q̇2β3s3 + β3q̇
2
2s3.

Considering the partial feedback linearization, we introduce inputs u1 and u2, and

design the control inputs τ1 and τ2 by

τ1 =
M11M33 −M13M31

M33

u1 +
M12M33 −M13M32

M33

u2 +
M33C1 −M13C3

M33

τ2 =
M21M33 −M23M31

M33

u1 +
M22M33 −M23M32

M33

u2 +
M33C2 −M23C3

M33

.

Thus, the dynamics in Equation (D.1) can be simplified as


q̈1

q̈2

q̈3

 =


u1

u2

−M31/M33u1 −M32/M33u2 − C3/M33

 .

Configuration 2

The dynamics are described by


M11 M12 M13

M21 M22 M23

M31 M32 M33



q̈1

q̈2

q̈3

+


C1

C2

C3

 =


τ1

0

τ2

 , (D.2)

where the inertia and Coriolis matrices are the same with those in Equation (D.1).
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Introduce inputs u1 and u2, and design the control inputs τ1 and τ2 by

τ1 =
M11M22 −M12M21

M22

u1 +
M13M22 −M12M23

M22

u2 +
M22C1 −M12C2

M22

τ2 =
M22M31 −M21M32

M22

u1 +
M22M33 −M23M32

M22

u2 +
M22C3 −M32C2

M22

,

which yields 
q̈1

q̈2

q̈3

 =


u1

−M21/M22u1 −M23/M22u2 − C2/M22

u2

 .
Configuration 3

The dynamics are described by


M11 M12 M13

M21 M22 M23

M31 M32 M33



q̈1

q̈2

q̈3

+


C1

C2

C3

 =


0

τ1

τ2

 , (D.3)

where the inertia and Coriolis matrices are the same with those in Equation (D.1).

Introduce inputs u1 and u2, and design the control inputs τ1 and τ2 by

τ1 =
M11M22 −M12M21

M11

u1 +
M11M23 −M13M21

M11

u2 +
M11C2 −M21C1

M11

τ2 =
M11M32 −M12M31

M11

u1 +
M11M33 −M13M31

M11

u2 +
M11C3 −M31C1

M11

,

which yields 
q̈1

q̈2

q̈3

 =


−M12/M11u1 −M13/M11u2 − C1/M11

u1

u2

 .
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APPENDIX E

PROOF OF LEMMA 5.2

Proposition 2. Every element in the Lie algebra C is a linear combination of vector

fields of the form

[Xk, [Xk−1, [· · · , [X2, X1] · · · ]]], (E.1)

where Xi ∈ C, i = 1, · · · , k.

It can be easily proven by induction. The proof can also be found in [67].

Now consider a general N -link model as described in section 5.2. Let X =

{f, g2, . . . , gn}, and C be the Lie algebra generated by the set X. Using Proposi-

tion 2, we only need to consider brackets of the form (E.1). Define

Brk(X) =
{
B ∈ Br(X) |

n−1∑
i=1

δi(B) + δ0(B) = k
}
,

Brl(X) =
{
B ∈ Br(X) |

n−1∑
i=1

δi(B)− δ0(B) = l
}
,

where k is the common definition of the degree of B.

For a vector field containing polynomials, if the nonzero components all have the

same polynomial degree, we define such degree as the polynomial degree of the vector

field. If all the components are zero, we define the polynomial degree of the vector
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field as −1. To illustrate the idea, consider the vector fields as follows,

V1 =


0

0

x2

 , V2 =


0

0

0

 and V3 =


x

0

x2

 ,

where V1 has a polynomial (about x) degree of 2, V2 has a polynomial degree of −1,

and the polynomial degree of V3 cannot be defined since it contains x and x2 that

have different polynomial degrees.

Lemma E.1. Consider all vector fields generated by taking the Lie brackets on

X = {f, g2, . . . , gn}. The velocity coordinates only appear as homogeneous polyno-

mials, perhaps with coefficients that are a function of the configuration variables1.

Split the vector fields into top half (horizontal component) and bottom half (vertical

component). The horizontal and vertical components may have different polynomial

(about the velocity coordinates) degrees, and should satisfy one of the following rules:

(i) Let l ≥ −1, if the polynomial degree of the horizontal component is l, then

the polynomial degree of the vertical component is l + 1. Moreover, bracketing by

f increases the polynomial degree of both the horizontal and vertical components

by one, and bracketing by ga, a = 2, . . . , n reduces the polynomial degree of the

components by one.

(ii) If the polynomial degree of the horizontal component is −1, the polynomial

degree of the vertical component is −1. In this case, the vector field is trivial.

Remark. As a quick check, Lemma E.1 is true for the vector fields in Equations (5.19)

and (5.22). The horizontal component of the vector field f has a polynomial degree

of 1, and the vertical component of f has a polynomial degree of 2, which satisfy rule

(i). The horizontal component of the vector field ga, a = 2, . . . , n has a polynomial

1For example, q̇21 sin(q1) + q̇22 + q̇1q̇3q6 is a second-order homogeneous polynomial about the
velocity coordinates.

184



degree of −1, and the vertical component of ga has a polynomial degree of 0, which

also satisfy rule (i).

Moreover, when bracketing the vector field ga by f , we generate a new vector

field [f, ga], of which the horizontal component has a polynomial degree of 0 and the

vertical component has a polynomial degree of 1. Both the horizontal and vertical

components of [f, ga] have one larger degree than those of ga.

Furthermore, when bracketing the vector field [f, gb] by ga, we generate a new

vector field [ga, [f, gb]], of which the horizontal component has a polynomial degree

of −1 and the vertical component has a polynomial degree of 0. Both the horizontal

and vertical components of [ga, [f, gb]] have one smaller degree than those of [f, gb].

Proof. Define vi = q̇i and denote the bracket

B = Bi
h(q, v)

∂

∂qi
+Bi

v(q, v)
∂

∂vi
or B =

Bi
h

Bi
v


where Bi

h is the horizontal component applied on the configuration states, and Bi
v is

the vertical component applied on the velocity states.

Now suppose the vector field B satisfies rule (i). Define B[l] as the horizontal com-

ponent with polynomial (about vi) degree of l and B[l+ 1] as the vertical component

with polynomial (about vi) degree of l + 1. Thus, it can be written

B =

 B[l]

B[l + 1]

 f =

f [1]

f [2]

 ga =

ga[−1]

ga[0]

 .
Bracketing B by f ,

[f,B] =

 ∂B[l]
∂q

∂B[l]
∂v

∂B[l+1]
∂q

∂B[l+1]
∂v


f [1]

f [2]

−
 0 I

∂f [2]
∂q

∂f [2]
∂v


 B[l]

B[l + 1]

 .

185



In [f,B], the horizontal component is

∂B[l]

∂q
f [1] +

∂B[l]

∂v
f [2]−B[l + 1].

The term ∂B[l]/∂q has a polynomial degree of l, and multiplying it by f [1] increases

its degree to l + 1. Similarly, the other two terms also have a polynomial degree of

l+1. Thus, the horizontal component of [f,B] has a polynomial degree of l+1. And

the vertical component is

∂B[l + 1]

∂q
f [1] +

∂B[l + 1]

∂v
f [2]− ∂f [2]

∂q
B[l]− ∂f [2]

∂v
B[l + 1].

which has a polynomial degree of l + 2. Thus, both the horizontal and vertical

components of [f,B] have one larger polynomial degree than those of B.

Bracketing B by ga,

[ga, B] =

 ∂B[l]
∂q

∂B[l]
∂v

∂B[l+1]
∂q

∂B[l+1]
∂v


 0

ga[0]

−
 0 0

∂ga[0]
∂q

0


 B[l]

B[l + 1]

 .

In [ga, B], the horizontal component is

∂B[l]

∂v
ga[0],

which has a polynomial degree of l − 1. And the vertical component is

∂B[l + 1]

∂v
ga[0]− ∂ga[0]

∂q
B[l],

which has a polynomial degree of l. Thus, both the horizontal and vertical compo-

nents of [ga, B] have one smaller polynomial degree than those of B.

Note that when l = −1 for B, simple computation may show that bracketing by
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ga will generate a new vector field that satisfies rule (ii).

When the polynomial degrees of both the horizontal and vertical components are

−1, which satisfies rule (ii), the vector field is trivial in this case, and bracketing by

either f or ga returns a zero vector field, which still satisfies rule (ii).

Lemma E.2. Let k ≥ 1 be an integer, the bracket B ∈ Brk(X) ∩ Brl(X) is zero at

the equilibrium states for l ≤ −1.

Proof. The lemma is true for k = 1, in which f is the only vector field satisfying

l ≤ −1. Suppose that the bracket B is constructed by m vector field f and m + l

vector field ga, a = 2, . . . , n. Using Lemma E.1, through bracketing by f and ga, the

vector field B can have the polynomial degree of −l for the horizontal component and

the polynomial degree of 1−l for the vertical component, or the vector field B is a zero

vector field. Since l ≤ −1, for both the two cases, the bracket B ∈ Brk(X)∩Brl(X)

is zero at the equilibrium states for l ≤ −1.

Lemma E.3. Let k ≥ 2 be an integer, the bracket B ∈ Brk(X)∩Brl(X) is identically

zero for l ≥ 2.

Proof. The proof follows the same line with the proof for Lemma E.2. Since there

are at least two more vector fields ga than f in constructing the bracket B, by using

Lemma E.1, the generated bracket B is identically zero.
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