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SYSTEM MONITORING BY TRACKING FRACTIONAL ORDER

Abstract

by

Kevin Leyden

Mechanical systems are often combinations of many interacting components. Ex-

amples of such systems include gas turbines, washing machines, machine tools, and

cars. These systems’ vibrations are commonly analyzed with numerical methods, but

the complexity makes mathematical analysis challenging. This research has pursued

a mathematical framework to relate applied force and displacement in mechanical

systems of this type by modeling them as networks.

Fractional differential equations are a simplifying tool for complex systems. The

overall dynamics of a mechanical (or mechanically behaving) system with many mov-

ing parts can be modeled as having a fractional order, circumventing any need to

include the many intermediate degrees of freedom explicitly. Damage to a complex

system of this type can be assessed by measuring the change in its fractional order.

This research has yielded a system identification procedure to compute fractional-

order models from frequency data. In analyzing simulated systems representing multi-

robot vehicle formations, shifts in fractional order are evident in response to changes

in both the severity and the location of damage. These results support the primary

goal of this research: a monitoring method that can diagnose damage without com-

plete sensor coverage, instead measuring fractional order to infer operational changes.

If fractional calculus can be likened to monomials in the derivative D — for ex-

ample, first derivative D, second derivative D2, and half derivative D1/2 — implicit
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operators are the next frontier: general expressions in D. In this research, implicit

operators have been used for concise models describing the dynamics of complex vi-

brating systems. These models are promising for ease of accurate simulation and

control of such systems. Along with this mathematical extension, the concept of

fractional order as a defining parameter in modeling and control has been extended

toward application in simulated trajectory-following control of a dynamically walk-

ing two-legged robot. Both extensions are meant to demonstrate the breadth of

previously undiscovered utility for fractional and implicit operators in engineering.
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CHAPTER 1

INTRODUCTION

A dissertation generally reflects a search for useful information. In that regard,

this one is no different; however, searching for said information between derivative

and integral operators is not so common. High-order mechanical systems are ubiq-

uitous throughout engineering. It is the goal of this work to present ideas that will

advance the modeling of these systems and, in turn, the control and design of these

systems. The conduit for this evolution is fractional calculus, a transformative branch

of mathematics that presents atypical interpretations of centuries-old principles.

Chapter 2 presents two types of background as foundation for this work. The

first is a mathematical overview of the concepts central to fractional calculus. The

second is a review of literature featuring these concepts in areas related to this work:

systems theory, control, dynamics, and robotics, among others.

Chapter 3 illustrates the finding on which the following results are built: that dam-

age to a high-order mechanical system can be observed through the lens of fractional

order. This discussion includes details of the mathematical analysis that justifies this

exploration. Computational results in the frequency and time domains follow, along

with supporting ideas to develop these observations into a monitoring method.

Chapter 4 reinforces the observations of detected damages with a system iden-

tification procedure. This is included for the purpose of lending insight into the

fractional-order dynamics that may be present throughout the class of systems with

mechanical models. Future application of system monitoring by fractional order in

experimental settings will need to rely upon a computational procedure of this nature.
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Chapter 5 is concerned with determining operators to describe complex mechan-

ical networks. Networks of this type are cast in the form of nodes having mass and

branches consisting of massless linear springs and dampers. The behaviors of finite

and infinite versions of systems in arrangements resembling trees and ladders are an-

alyzed. It is shown that the overall dynamics of infinite systems can be represented

using implicitly defined integro-differential operators, and it is suggested that this ap-

proach may be beneficial compared to high-order differential equations. Results from

the proposed models compare favorably with numerical results from finite systems.

This research is a mathematical extension of the work of the preceding chapters.

Chapter 6 presents research seeking greater efficiency for walking robots. Effi-

ciency can be improved in two ways: better performance (i.e., less wasted motion)

and reduced energy consumption. Fractional-order control is a pathway to both of

these improvements because of the flexibility it offers in designing a control strategy.

Compared to the existing proportional-derivative architecture, changing the order

of the derivative — the number of derivatives taken — to real numbers other than

1 has yielded both types of improvement for a simulated walker. The evidence of

better performance is the leg angles’ improvement in maintaining a desired relation-

ship with respect to one another. Depending on the controller chosen, the walker

can also be made to achieve the original level of performance with reduced control

signals and less torque delivered to the hip joint, implying greater energy efficiency.

This research demonstrates the potential of fractional-order control even in a setting

where fractional-order dynamics are not apparent, further highlighting its promise in

controlling known fractional-order behavior.

Chapter 7 outlines the steps that may follow from this research. A mathematical

framework to relate effects on mechanical components to order changes on the system

level is proposed as a contribution that will make this monitoring more versatile. This

versatility can be verified by enhancing the identification procedure and applying

2



it to additional systems, to include experimental data. It is also suggested that

fractional calculus can be exploited for systems modeling in a distinct but related

way: constructing a model from integer-order elements that responds at any order

desired. These ideas are intended as future research directions that can proceed from

this dissertation.

3



CHAPTER 2

MATHEMATICAL AND CONTEXTUAL BACKGROUND

Fractional calculus is a shock to the mind. Students of calculus are no strangers to

derivatives and integrals, nor to the idea that they can be performed multiple times,

resulting in a series of functions that are progressively the derivatives or integrals of

one another. Still, until led to the metaphorical water at the outset of this work,

this author never considered the possibility that a derivative or integral could be

performed a noninteger number of times.

This chapter presents that revelation in two ways: the fundamentals behind the

operators of fractional calculus and the effects that those operators have had on the

research community in systems, control, dynamics, robotics, and similar areas. These

discussions are meant to reveal the context in which the ideas and results outlined in

the following chapters take their place.

2.1 Fractional Calculus

As stated above, it is common enough to perform repeated differentiation. Some

types of functions are conducive to concise, closed-form expressions for the second

derivative, the third, and so on; sine and cosine come to mind. As detailed in [22],

an example function that foreshadows the derivation of the fractional derivative is a

monomial. Consider f(x) = xk, where k is an integer greater than or equal to zero.

It follows that

df

dx
(x) = kxk−1,

4



d2f

dx2
(x) = k(k − 1)xk−2,

and so on. To this point, the restrictions on k are unnecessary, but they are needed

for the following generalization. For a derivative order q that is an integer less than

or equal to k,

dqf

dxq
(x) =

k!

(k − q)!
xk−q. (2.1)

Factorial arguments must be integers greater than or equal to zero. Fractional cal-

culus, however, is a rebuttal to the claim that k and q must be integers, or indeed,

that any restrictions within the real numbers need be imposed on them at all.

The factorial operator has a generalization to the real numbers; this is the gamma

function,

Γ(k) =

∫ ∞
0

zk−1e−z dz.

The analogy between the gamma function and the factorial is shown in Figure 2.1.

The factorials of 0 to 4 are 1, 1, 2, 6, and 24; indeed, these values of the gamma

function are marked in the figure. Their corresponding arguments are shifted by

one from the factorial arguments. In other words, for a nonnegative integer k, k! =

Γ(k + 1), or Γ(k) = (k − 1)! (though Γ(0) does not converge).

Naturally, the true merit of the gamma function in this context is that it provides

a factorial equivalent for noninteger arguments. This is needed to free Equation (2.1)

from the restriction of integer k and q. The substitutions that accomplish this are

dq

dxq
xk =

k!

(k − q)!
xk−q → dq

dxq
xk =

Γ(k + 1)

Γ(k − q + 1)
xk−q. (2.2)

The gamma function converges for all real arguments except nonpositive integers.

5



0 1 2 3 4 5

k

0

5

10

15

20

25

(k
)

Figure 2.1. Gamma function for positive arguments with factorials marked.

6



0 0.5 1 1.5 2 2.5 3

x

0

1

2

3

4

5

6

7

8

9

10

d
q
 f 

/ d
xq

f(x) = x2, order = 0 to 2 by 0.2

function, x2

deriv 1, 2x
deriv 2, 2

Figure 2.2. Many derivatives of x2.

Equation (2.2) can be used to compute fractional derivatives for a monomial. An

example of a popular monomial plotted with some of its integer and fractional deriva-

tives is shown in Figure 2.2. As can be seen in the figure, the fractional derivative is

not simply a linear interpolation between integer derivatives; one may instead think

of it as a mathematical interpolation representing the result of stopping part of the

way through the derivative operation.

The gamma function’s utility is not limited to this example. Rather, it is essential

in deriving the Riemann-Liouville fractional derivative. As in [50], this derivation

begins with Cauchy’s formula for repeated integration.

Repeated integration can be considered differentiation of a negative integer order.
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If this order is called q (q < 0) and the formula is applied to a function g(x), then

dqg

dxq
(x) = q integrals =

1

(−q − 1)!

∫ x

0

(x− y)−q−1g(y) dy.

By substituting the gamma function, this formula can be extended to negative real

orders, not exclusively integers, q:

dqg

dxq
(x) =

1

Γ(−q)

∫ x

0

(x− y)−q−1g(y) dy. (2.3)

This is the Riemann-Liouville fractional integral. If a fractional derivative that is

truly a derivative, with q ≥ 0, is desired, it can be computed by repeated differenti-

ation of Equation (2.3). This step is given by

dqg

dxq
(x) =

dn

dxn

(
dq−ng

dxq−n
(x)

)

for an integer n > q. Further information about this and other definitions, as well

as a detailed explanation of the fundamentals of fractional calculus, can be found in

[50].

The Riemann-Liouville definition began with an integration formula. One alterna-

tive definition can be reached by starting from a formula for repeated differentiation;

this is the Grünwald-Letnikov derivative. As derived in [38], the first and second

derivative definitions of

df

dt
(t) = lim

∆t→0

f(t)− f(t−∆t)

∆t

and

d2f

dt2
(t) = lim

∆t→0

f(t)− 2f(t−∆t) + f(t− 2∆t)

(∆t)2

8



can be generalized to an integer number of derivatives q:

dqf

dtq
(t) = lim

∆t→0

∑
0≤j≤q

(−1)m

q
j

 f (t+ (q − j) ∆t)

(∆t)q
.

The gamma function can be employed to compute an equivalent binomial coefficient

for a real, instead of exclusively integer, first argument q. These substitutions are

q
j

 =
q!

j! (q − j)!
→

q
j

 =
Γ(q + 1)

Γ(j + 1)Γ (q − j + 1)
.

Following from this generalized binomial coefficient, the Grünwald-Letnikov fractional

derivative is given by

dqf

dtq
(t) = lim

∆t→0

1

(∆t)q

∞∑
j=0

(−1)j

q
j

 f (t+ (q − j) ∆t) . (2.4)

The explanation in [38] offers some beneficial approximations for a numerical

context. Specifically, for small ∆t (much less than 1), and under the assumption that

the derivative order q is not large (greater than about 10), the quantity q∆t within

the function argument in Equation (2.4) can be neglected. This is because q∆t is

dwarfed in magnitude by t and j∆t. Neglecting q∆t does not save computational time

at first glance; however, in the context of numerical methods, values of the function

f are generally only available at times that are integer multiples of ∆t (t = p∆t), so

an adjustment of this nature is often needed.

A fundamental distinction between fractional- and integer-order derivatives is that

finite-difference approximations for fractional-order derivatives are not strictly local.

As can be seen in Equation (2.4), computing fractional derivatives of a function
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requires knowledge of its history. However, if t = p∆t and initial conditions are

zero, then the summation need not continue incrementing to j = ∞, corresponding

to t = −∞; it can instead be bounded by t = 0, stopping at j = p. Thus, a

computationally friendly version of this definition is

dqf

dtq
(t) ≈ 1

(∆t)q

p∑
j=0

(−1)j

q
j

 f (t− j∆t) ,

along the lines of the discussion in [14]. This particular approximation is used for

time-domain solutions of fractional-order differential equations throughout this work.

2.2 Literature Review

The background presented in this section shows how fractional calculus has made,

and can continue to make, its way into the literature throughout the disciplines

of engineering. This overview begins with references covering the fundamentals of

fractional calculus and results of studies grounded in these mathematics. Following is

a selection of literature addressing problems in modeling and control of multi-robot

systems.

The discussion continues with research efforts connecting fractional calculus and

systems engineering, establishing the niche to be occupied by Chapter 3 and beyond.

The first set of contributions of this nature represents a variety of control and robotics

settings, both analytical and experimental, while the next has an emphasis on system

identification so as to illustrate the ways in which the content of Chapter 4 is distinct

among existing methods. The section concludes by discussing the references that

preceded the contributions of this work along a common line of inquiry, as well as

the publications generated from the efforts leading to this dissertation.
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2.2.1 General Fractional Calculus References

An accessible textbook recommended as a starting point for the study of fractional

calculus is [50]. It is concise and has a structure much like that of a typical calculus

textbook. Examples of topics covered, in addition to the vital definitions of the

fractional derivative and integral operators, include techniques such as the product

and chain rules, adaptations to numerical methods, and selected solution procedures

for differential equations.

A text with less emphasis on background but otherwise similar in content is [56].

Differential equation solutions are the focus of this book. The Mittag-Leffler func-

tion, a generalization of the exponential function that plays a role in these solutions,

is discussed in the opening chapter. Numerical approximations, extensions to con-

trol, and applications of the mathematics are given thorough attention as well. An

overview of mathematical applications is given in [68].

The collection [3] contains recent results exploiting fractional calculus by dozens of

scholars in the fields of systems, control, and applied mathematics and physics. Some

entries in this collection are concerned with linear control such as fractional PID or

nonlinear methods such as backstepping and model predictive control. While these

are simulation-based, other contributions present results that indicate the advantages

of incorporating fractional calculus in engineering research.

One such chapter, from the area of numerical methods, is “A Fractional Order

Dynamical Trajectory Approach for Optimization Problem with HPM.” This method

solves nonlinear programming problems by the homotopy perturbation method (HPM),

casting such a problem as a system of fractional differential equations. For the prob-

lem of minimizing f(x) = 100(x2
1 − x2)2 + (x1 − 1)2 such that h(x) = x1(x1 − 4) −

2x2 + 12 = 0, the solution is x1 = 2 and x2 = 4. The HPM of order 0.9 returns

x1 = 1.9991 and x2 = 3.9996 after 100 iterations, while the same method of order 1

and the fourth-order Runge-Kutta method both take over 300 iterations to reach that
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proximity. A second example problem affirms the conclusion of faster convergence

with a noninteger order.

Diffusion is another subject where fractional calculus has taken root. An example

from [3] is the chapter “Numerical Solution of a Two-Dimensional Anomalous Diffu-

sion Problem.” Anomalous diffusion is described by a generalized diffusion equation,

a partial differential equation that can contain fractional derivatives. In a problem

where the time derivative of order 1 is equal to the sum of the two spatial derivatives

of orders 0.3 (for x) and 1.8 (for y), for initial condition u(x, y, 0) = sinh(x + y),

exact agreement is shown between the analytical solution and one computed by a

Grünwald-Letnikov approximation. This approximation is then used to compute

two- and three-dimensional representations of u for varied parameters as a function

of space and time.

The role of fractional calculus in a bioengineering application can be found in the

chapter of [3] titled “Analyzing Anomalous Diffusion in NMR Using a Distribution

of Rate Constants.” Specifically, the two experiments discussed are nuclear magnetic

resonance (NMR) imaging of various gels and of a human brain. A fractional order

parameter is part of a stretched exponential model to represent signal attenuation as

a result of diffusion. The data analysis results for these experiments show that the

model orders for the gels (0.71 ± 0.06, 0.80 ± 0.05, and 0.91 ± 0.08), white matter

(0.600± 0.008), gray matter (0.78± 0.03), cerebral spinal fluid (0.910± 0.005), and

distilled water (1.000±0.003, suggestive of classical diffusion) all differ in expectation

or distribution. These findings align with the hypothesized differences in diffusion

behavior, and it is suggested that they may portend advances in monitoring of tissues.

Further engineering applications are discussed in [52]. Among resources other than

books, a comprehensive overview of the properties of fractional derivatives can be

found in [53], which also presents several definitions. The article [51] is an informative

introduction to the effects of fractional derivatives and integrals on the area of linear
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systems, specifically the impulse and step responses. It also discusses applications

and provides an extensive assortment of references. A thorough list of additional

resources throughout the disciplines of science and engineering can be found in [42].

2.2.2 Multi-Robot System References

The following references do not incorporate fractional calculus, but they are rep-

resentative of the questions being asked by scholars about cooperating robots. This

is the context of the example system that begins to frame the contributions of this

dissertation in Chapter 3. As such, knowledge of how these contributions may fit

into the area of multi-agent robotics is informative.

The article [60] is cast as a tutorial about consensus algorithms, the procedures

by which groups of agents make collective decisions. It can also serve as a literature

review on the subject. A deeper examination of distributed multi-robot systems,

presenting both concepts and recent research findings, is [7]. This article begins

with consensus but extends the discussion to formation control, optimization of this

control, and state estimation.

An article establishing a control strategy for a group of vehicles is [19]. This

work decouples the communication between vehicles from their dynamics, promoting

stability of the formation and giving rise to localized control that is robust to faulty

communication links. A review article of a similar nature that discusses many efforts

toward control of multi-agent systems is [48].

In [37], interactions between vehicles are established with the constructions of ar-

tificial potentials and dissipative control. Conceptually, these measures are connected

to the example system of Chapter 3, in which the interactions are modeled as springs

and dampers. A formation control strategy that is implemented experimentally with

a camera mounted on each robot is discussed in [13]. This is a modular approach

that is designed for scalability to large groups of robots.
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These references have a common interest in the pursuit of strategies by which

robots in a formation or group can work together. The contributions of this disser-

tation exploit fractional calculus to manage the high-order nature of such systems.

Innovation in modeling, such as that detailed in this work, may precede advances in

control of these systems and, in turn, physical implementation of those strategies.

2.2.3 Other Interacting System References

There is hesitation to model systems with many vibrating degrees of freedom in

closed form, as reflected in the literature. Extracting information from gas turbine

vibrations is sufficiently intricate to invoke the use of machine learning, as presented in

[62]. Vibration signals in washing machines are analyzed in [24]; that approach seeks

to detect faults from the data but not to generate mathematical models. Machine

tools are modeled computationally in [2] under the premise that coupled simulation

is essential as a result of the complexity of the vibrations. Analytical models of

machine tool vibrations are considered in [33], but those are differential equations

with terms delayed in time; nonlinear operators are required in that analysis. In

[69], a mechanical model is used for an automobile vibration application, but it is

a deliberate simplification, considering only part of the vehicle where some analysis

of the whole would be preferred if feasible. Each of these is an example of a system

that can be considered in a new light with the approach of Chapter 5. Many of the

systems that are possible applications for this research are cyber-physical systems; the

dynamical perspective introduced here could complement the modeling frameworks

discussed in [34, 36, 16].

The appeal of mechanical networks arises from the appearance of compelling prop-

erties in arrangements of mechanical components. Scaling in mechanical systems with

random properties is discussed in [47]. The idea that a large network’s behavior can

remain essentially the same irrespective of its size, perhaps always sending signals at
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a particular frequency, is a motivation for these studies and is discussed for electrical

networks in [74]. Concepts stemming from infinite models of systems are presented

in an electrical context in [73]. A network structure similar to the tree arrangement

considered in this chapter is used to model blood flow in [1] and [20], showing the

versatility of such a structure.

2.2.4 Walking References

Development of humanoid robots, dating back to early advances such as [28], is

motivated by a desire for robots to perform tasks in the full set of environments

accessible by humans. Several approaches have been taken toward governing the

walking motions of a humanoid. Incorporating upper-body movements occurring

simultaneously with dynamic walking is the subject of [72]. Reducing complexity

of the control problem by defining a trajectory for the robot’s center of gravity is

discussed in [32].

Accounting for the discrete impacts of the feet during control design for a walker

has been accomplished by considering the walker to be a hybrid system. One such

approach, hybrid zero dynamics (HZD), was introduced in [70] and expanded in [71],

and it is central to the choice of trajectory in Chapter 6. Control-related robotics

efforts strengthened by HZD include hopping, as in [58]; running, as in [67]; and 3D

walking, as in [26]. Rejection of disturbances in translational velocity for a robot

governed by HZD-inspired control is the subject of [57]. In addition to control for

robots, applications of HZD include predicting gait properties for humans at different

speeds, as in [43].

The closest precedent for the work of Chapter 6 in the literature, found in [64], uses

fractional-order control, but that algorithm takes the ground reaction forces at the

heel and toe as control variables and is thus limited by large, flat feet. That walker

also has ankle and knee actuation. In contrast, this research simulates a two-link
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compass-gait walker with point feet and hip actuation. The walker is underactuated.

Such a model has been the basis for several walking research efforts, such as [8].

2.2.5 Integer-Order System Identification References

The system identification method of Chapter 4 is intended to inform a health

monitoring strategy for engineered systems with a large number of components.

Modal characterization of systems of this type undergoing operational changes is

the subject of [61] and [59]. Further research efforts in this direction include [10],

regarding systems with nonlinear elements, and [63], regarding actively switching sys-

tems. Chapter 4 is concerned with linear systems with one or more properties that

change permanently, perhaps unexpectedly. Furthermore, the utility of the resulting

fractional-order differential equation models in suggesting engineering adjustments

after damage is a motivation for this work to be established alongside other monitor-

ing techniques.

System identification tools connected to structural health monitoring take sev-

eral forms. There are methods for output-only systems such as [55]. Reduced-order

modeling from structural response data is an objective of [31]. Nonlinear and mul-

tivariable methods include [9] and [30], respectively. In contrast to these sources’

chosen ways to incorporate damage, the approach of Chapter 4 tracks it by measur-

ing fractional order. It may be considered a fractional-order approach to the problem

presented in [11]: determining a model from frequency response data. In situations

with other types of data, the methods of [55, 31, 9, 30] could potentially be extended

to yield fractional-order models, adding flexibility to the current model forms.

2.2.6 References on Fractional Calculus in Systems and Control

Examples of fractional calculus in the broad context of systems are as follows.

Efficiency in modeling complex mechanical systems can be achieved with fractional-
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order differential equations. Simplifying dynamics with fractional-order operators is

the motivation for studies in several engineering fields. These studies include [35] for

vibration, [29] for impedance in biological structure, and [4] for mechanical dynam-

ics. Fractional-order differential equations are used as exact models in continuum

mechanics, as in [17], and in multiphase materials, as in [18]. Other platforms for

fractional-order differential equation models include scale-free networks and linear

friction welding, as discussed in [21, 23].

On a more fundamental level, the article [12] presents stability conditions for

fractional-order systems with delay. These findings rely upon Lambert functions for

analytical solutions to fractional-order differential equations. On the topic of con-

trol theory, [75] gives a method for choosing gains in fractional-order proportional-

integral-derivative (PID) control with noninteger orders on the integrator and differ-

entiator. This is shown to perform better than conventional PID on fractional-order

plants in simulation.

Experimental implementation of fractional PID tuning is the subject of [46]; this

article includes results from controlling a water circuit and a servo motor. For the

former, the transfer function of the plant whose input is a servo valve voltage and

whose output is the water level is given by

G(s) =
3.13

433.33s+ 1
e−50s,

so it is first-order with a time delay of 50 seconds. The control parameters are chosen

by constrained optimization of crossover frequency relative to a desired frequency,

where the constraints represent specifications for phase margin, slope of phase at

the crossover frequency (a flat slope indicates robustness to changes in the plant

gain), and rejection of high-frequency noise and output disturbance. The resulting
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controller is

C(s) = 0.6152 +
0.0100

s0.8968
+ 4.3867s0.4773,

and all specifications are met.

The servo motor is a testing platform for the approach for auto-tuning a fractional

PID controller in [46]. This procedure is developed for control of plants with unknown

dynamics. The controller computed during the experiment is a product of fractional

PI and PD controllers, namely

C(s) =

(
0.4348s+ 1

s

)0.8468(
4.0350s+ 1

0.0039s+ 1

)0.8160

.

This controller satisfies specifications of a desired crossover frequency, phase margin,

and slope of phase at the crossover frequency. It also leads to step responses exhibiting

less overshoot than is seen in simulation results with a conventional PID tuned by

the Ziegler-Nichols method.

Two studies presenting control of formations of agents with fractional-order dy-

namics are [5, 6]. The work of [5] proposes a control algorithm and discusses its

convergence for different choices of damping in the algorithm. Varying the fractional

order present in the components and coordination structure is the focus of [6]. In

these studies, fractional order is part of the construction of the problem; in contrast,

the coverage formation system of Chapter 3 and beyond is observed to have fractional

order despite being constructed from only integer-order dynamics.

In addition to [64], first mentioned in Section 2.2.4, works merging fractional cal-

culus and robotics include [65], which is concerned with a hexapod walker. In this

case, fractional order is exploited as an avenue for greater flexibility in control, specif-

ically proportional-derivative control. Another example of this control advantage is

given in [15], where the robot of interest is a flexible manipulator. In that article,

the control setting where incorporation of fractional order proves beneficial is sliding
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mode control.

2.2.7 Fractional-Order System Identification References

Chapter 4 is motivated by practical concerns. For applicability to a wide variety

of systems, a computational identification procedure must play a key role in any

version of the monitoring proposed in this dissertation. The following are several

examples of fractional-order system identification from the literature, including the

one from which the method of Chapter 4 draws its inspiration.

An analytical treatment of the topic is [25], which details the determination of

a continuous order distribution to describe a system. The results are, in essence,

functions of order (in this context, a real number) that illustrate the concentration of

dynamic response. Another mathematically grounded approach to fractional-order

system identification is detailed in [41]. In this case, a series of modulating functions

convolved with time-domain data creates the system of equations to be solved for

governing equation parameters.

The method in [14] constructs a matrix equation to be solved, resulting in a

discrete order distribution. In principle, the method holds promise for efforts similar

to that of this dissertation; indeed, it can be stated that the quantities to be monitored

comprise a discrete order distribution. However, this particular formulation appears

to have limited robustness across initial choices of frequency resolution.

Computationally intensive methods include the iterative optimization approach

of [49], which simultaneously computes estimates for a system’s order and other

parameters, including time delay. Genetic algorithms are the tool of choice in [76] for

determining fractional-order governing equations. While these methods are effective,

the investigations of this work have proceeded as desired with a simpler formulation.

The book [54] is an extensive text that, if the reader does not mind the French lan-

guage, should be included among [50] and [56] as recommended overviews of fractional
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calculus. The system identification method discussed therein presents the framework

that has given rise to the method of Chapter 4. The latter has been modified sig-

nificantly from the approach of [54], but the explanation behind that approach still

lends itself well to the aims of this dissertation. The connection between the two

methods is illustrated further in Chapter 4.

2.2.8 References of Precedent and Association

The example system that serves as backdrop for the contributions of Chapter 3

and beyond is a bifurcating tree network system. The importance of such systems is

motivated in [44] and [45]. Settings for models of this nature include biological trans-

port, river basin drainage, microchannel electronic cooling, and viscoelasticity, among

others. In particular, viscoelasticity can be modeled with a self-similar arrangement

of springs and dampers or their equivalents; this is shown in [27].

This arrangement is adapted for the context of multi-robot systems in [22], where

it is shown that the positional relationship of interest has fractional order. Order

changes are observed as effects of damage to this system model; this discussion is

the subject of [38]. The system identification method of Chapter 4 is explained in

publication form in [39].

This chapter has given two types of background for the contributions to be pre-

sented in the remainder of this dissertation. The operators of fractional calculus

and examples of how these operators have been employed in the literature speak to

the versatility of this branch of mathematics. The other publications referenced are

meant to illustrate both the interest level in findings from this scholarly vein and the

placement of this dissertation within the context of systems, control, robotics, and

similar fields.
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CHAPTER 3

USING FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS TO MONITOR

COOPERATING AGENTS

Mechanical systems are commonly modeled with mass, damper, and spring el-

ements. Collectively, these are called lumped elements. Masses denote bodies or

particles that are moving, while dampers and springs connect those masses whose

movements are related. From a model of this nature, a differential equation can be

formulated to capture the motion of the system as a whole. This chapter presents an

example system modeled in this way that demonstrates the utility of fractional-order

differential equations as a monitoring tool. Much of this content appears in [38],

while some figures and accompanying discussions appear in [39].

3.1 Motivational Example

Consider a spill of toxic waste and a group of robots deployed to clean the contam-

inated area, as shown in Figure 3.1, from [38]. It is clear that the robots should be

placed throughout the area, but the spillage is not uniform. It is deemed most useful

to have about half of the robots near the source of the spill to stop further spreading

of the waste, with the remaining robots placed at greater distances to address the

damage already done. Thus, a formation is established with 2n (perhaps n = 4, so

16) robots nearest the spill, with the number of robots in each subsequent layer being

half that of the previous layer. This progression terminates with one robot in a layer

by itself.
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advection

Figure 3.1. Contamination example with level of shading indicating
proximity to the source.

This is a coverage problem; these robots must work together. If they do not,

the cleaning is likely to be inefficient or, worse, the robots will collide with each

other. To mitigate the possibility of collision, the communication between the robots

is established such that the positional relationships between robots in neighboring

layers are spring-like or damper-like, as in Figure 3.2, from [39]. In other words,

the more any two robots connected in this way deviate from one another in the state

variables of position (relative to a set equilibrium spacing) or velocity, the more effort

is to be put toward correcting their differences in state. The robot in a layer by itself

is in charge of the formation; its movements direct the other robots forward and

backward according to these relationships.

This tree-like formation’s dynamics have a self-similar nature. Each robot is

connected to two robots in the next layer, one connection being a spring and the

other a damper. From a mathematical modeling perspective, the relationship of

interest is one of input and output between the first robot’s position, x11, and that of

all 2n robots nearest the spill, xlast. The latter robots are considered locked together,

but this is with respect to the equilibrium spacing, so in a real cleanup scenario their
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Figure 3.2. Robotic formation with spring and damper connections.

actual positioning would be set arbitrarily.

Springs and dampers have constants for stiffness and damping, respectively, that

indicate their strength. Here, at least in this initial construction, the springs all have

stiffness constant k, while the dampers all have damping constant b. The mass of

the one robot in the first layer is taken to be the same as the combined mass of the

2n robots in the last layer, with all masses of the robots between them considered

negligible. This mass distribution, albeit unlikely to reflect any physical experiment,

ensures that the movement of the intermediate robots is influenced primarily by that

of the first robot and the springs and dampers. That notion would be feasible in

an experimental setting with a more realistic mass distribution among the group of

robots.

For this example, the component constants are chosen to be k = 2 (force per

length or mass per time squared) and b = 1 (force per velocity or mass per time). The

transfer function (TF) G(s), or the complex multiplier applied to an input sinusoid to

compute the output sinusoid, can be shown on a Bode plot as a function of frequency.

For any n ≥ 4, there exists a band of frequencies over which the magnitude of the TF

decreases with a slope of −10 dB/decade and the phase difference between output
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Figure 3.3. Frequency response of robotic formation.

and input plateaus at −45 degrees. These behaviors are shown in Figure 3.3 and

were first noticed in [22]. This result is atypical in the presumed context of linear

systems, where in most cases, the magnitude has slopes that are exclusively integer

multiples of −20 dB/decade, while the phase difference decreases steadily toward an

integer multiple of −90 degrees.

3.2 Mathematical Analysis

The property of the system dynamics that causes this unexpected frequency re-

sponse can be discovered by examining the formulation of the transfer function G(s).

Consider the motion of a mass attached to one spring. The governing equation for
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this system is

mẍ(t) + kx(t) = f(t)

where x(t) is the displacement between the two ends of the spring relative to equi-

librium and f(t) is the input force on the mass as a result of the spring. After

undergoing the Laplace transform, assuming initial conditions of zero,

ms2X(s) + kX(s) = F (s).

In turn,

Gk(s) =
X(s)

F (s)
=

1

ms2 + k
≈ 1

k

with the approximation arising because, in this case, the spring force is assumed to

dominate inertia.

In analogous fashion, the governing equation for a mass-damper system is

mẍ(t) + bẋ(t) = f(t).

The Laplace transform with initial conditions of zero is

ms2X(s) + bsX(s) = F (s).

With the damping force dominating inertia, the transfer function is

Gb(s) =
X(s)

F (s)
=

1

ms2 + bs
≈ 1

bs
.

Hereafter, Gk(s) = 1/k and Gb(s) = 1/bs.

25



3.2.1 Undamaged Coverage Formation

By combining Gk and Gb in parallel, the tree formation is established for n = 1.

Its transfer function is

G1(s) =
1

1

Gk(s)
+

1

Gb(s)

=
1

1
1

k

+
1
1

bs

.

Extending to n = 2 requires adding a spring-damper parallel combination in series

with both the spring and damper of layer 1. As a result, the transfer function is

G2(s) =
1

1

Gk(s) +
1

1

Gk(s)
+

1

Gb(s)

+
1

Gb(s) +
1

1

Gk(s)
+

1

Gb(s)

,

and the pattern continues for larger trees:

G∞(s) =
1

1

Gk(s) +
1

1

Gk(s) + . . .
+

1

Gb(s) + . . .

+
1

Gb(s) +
1

1

Gk(s) + . . .
+

1

Gb(s) + . . .

.

As mentioned previously, the structure of the tree is self-similar. If the tree is

extended to infinitely many layers, a substitution can be made to illustrate the self-

similarity in a transparent fashion. The transfer function then becomes

G∞(s) =
1

1

Gk(s) +G∞(s)
+

1

Gb(s) +G∞(s)

.
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Furthermore, simplifying the fraction leads to a closed-form expression for G∞(s):

G∞(s) =
1

Gb(s) +G∞(s) +Gk(s) +G∞(s)

(Gk(s) +G∞(s))(Gb(s) +G∞(s))

;

G∞(s) =
(Gk(s) +G∞(s))(Gb(s) +G∞(s))

Gb(s) + 2G∞(s) +Gk(s)
;

G∞(s)(Gb(s)+2G∞(s)+Gk(s)) = Gk(s)Gb(s)+Gk(s)G∞(s)+Gb(s)G∞(s)+G∞(s)2;

Gb(s)G∞(s) + 2G∞(s)2 +Gk(s)G∞(s)

= Gk(s)Gb(s) +Gk(s)G∞(s) +Gb(s)G∞(s) +G∞(s)2;

G∞(s)2 = Gk(s)Gb(s);

G∞(s) = ±
√
Gk(s)Gb(s) = ±

√
1

kbs
.

From the hypothetical viewpoint of the person deploying the robotic formation

in a physical setting, the positive solution is of exclusive interest; if the first robot is

displaced to the right, all of the others settle to the right of their original positions

as well. The Laplace-domain operator s−1 maps to integration in the time domain,

and a system with a TF whose leading polynomial degree in the denominator is 1

is classified as first-order. It follows, as in [22], that the operator s−1/2 maps to

half-integration and that the corresponding system is of order 1/2.

3.2.1.1 Convergence to Order One-Half

The connection of this result to that of the finite tree is illustrated by the frequency

response of this 1/2-order system. The Bode plot given in Figure 3.3 shows magnitude

decreasing at −10 dB/decade and a corresponding constant phase difference of −45

degrees. Given behavior of order 1/2, these response characteristics are expected
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Figure 3.4. Elongation of frequency band suggesting half-order behavior.

because they are halfway between those for order zero (0 dB/decade and 0◦) and

order one (−20 dB/decade and −90◦). In the case of the finite tree, the inclusion of

more layers in the tree elongates the frequency band representative of a half-order

system. A plot showing varied choices for the number of layers and the resulting

changes in length to the frequency band of interest is given in Figure 3.4.

The frequency band indicative of order 1/2 can be measured in units of powers of

10 rad/s. Here, the frequency band is said to begin when the phase difference becomes

less than or equal to −42.5 degrees, that is, close to −45 degrees, and end when it is

no longer greater than −47.5 degrees. The width of the half-order frequency band as

a function of tree depth (number of layers) is plotted in Figure 3.5.
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Figure 3.5. Length of frequency band suggesting half-order behavior.
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In these measurements, the frequency domain is adjusted as needed to capture the

frequency band of interest for different choices of k and b. The results do not change

with k and b, but the frequency band shifts, with the ratio of k to b as its center.

The upper bound of 100 layers is chosen to limit the influence of the outliers having

the lowest numbers of layers: one, two, and three. These are outliers because they

do not have enough components to exhibit fractional-order behavior, as discussed in

[22]. Still, since these systems each possess a frequency band with a phase difference

near −45 degrees, their inclusion is merited.

The relationship in Figure 3.5 appears quantifiable by fitting the curve to a power

model cnp, where n is the number of layers. Regardless of the choices of k and b ex-

amined (with the most extreme of these choices being k = 0.001 and b = 1000 and

vice versa), the constants are c = 1.0731 and p = 0.4114. This fit has a determi-

nation coefficient of r2 = 0.9568. However, the error for low numbers of layers and

the unbounded growth of error on the high end imply that the power law is not an

appropriate fit for this curve. Indeed, when different spans of tree depths are con-

sidered, the constants change too much for confidence to be placed in any one power

model. No other type of simple curve fit considered is any more promising.

A truly half-order system would have a phase difference of −45 degrees for all

frequencies. The truncation of the tree at some finite number of layers makes that

impossible at the lowest and highest frequencies. When assembled from connections

of springs and dampers, the transfer function of the tree has a numerator and a

denominator that are polynomials in s of orders 2n − 2 and 2n − 1, respectively,

with a nonzero term for each power of s. For low frequencies, the constants in

these polynomials dominate, leading to a phase difference of 0 degrees. For high

frequencies, the highest-order terms dominate. The transfer function behaves as a

constant multiplied by 1/s, leading to a phase difference of −90 degrees. It follows

that these two trends in phase difference are seen in every frequency response plot for
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the finite tree regardless of its number of layers; however, adding more layers makes

the −45-degree phase difference more prominent and the progressions to 0 and −90

degrees less so.

3.2.1.2 Approximation by Fractional-Order Transfer Function

In light of these results, approximation of the full system’s TF by the half-order

TF is a natural pursuit. This approximation appears most promising when the system

receives inputs in the medium-frequency range. By way of motivation, the tree as

constructed from springs and dampers is a high-order system; exact models would

scale poorly. For n layers of springs and dampers, the order is 2n − 1.

Meanwhile, the infinite tree is governed by a differential equation with far fewer

terms. The transfer function

G∞(s) =
X(s)

F (s)
=
X11(s)−Xlast(s)

F (s)
=

√
1

kbs

is as determined. Considering that the input force is the force applied to the last

layer of robots, a Newtonian force balance yields

f(t) = mẍlast(t).

The substitution in the Laplace domain and further manipulations give

X11(s)−Xlast(s)

ms2Xlast(s)
=

√
1

kbs
;

ms2Xlast(s) =
√
kbs(X11(s)−Xlast(s)),

or, in the time domain,

mẍlast(t) +
√
kb
d1/2xlast

dt1/2
(t) =

√
kb
d1/2x11

dt1/2
(t). (3.1)
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The advantage of this step is ease of computation for purposes of modeling and

simulation.

The validity of the approximation is borne out in time-domain simulations. This

discussion overlaps in part with [38]. Given an initial condition of zero and the input

ẍ11 =


1, 0 ≤ t < 1;

−1, 1 ≤ t < 2;

0, t ≥ 2,

(3.2)

a step response of the tree with the components modeled individually is produced

with a linear differential equation solver. This form of step response is chosen for

practicality. In a physical setting, one cannot displace a robot from position 0 to 1 in

zero time. However, one can enact that displacement by imparting a positive force,

then a negative force, then zero force to yield the acceleration profile of Equation (3.2).

Each intermediate robot has an equation of motion solved simultaneously with

Equation (3.2) to compute the step response. This equation takes one of two forms:

ẍodd =
1

m

(
k(xleft − xodd) + k(xright1 − xodd) + b(ẋright2 − ẋodd)

)
; (3.3)

ẍeven =
1

m

(
b(ẋleft − ẋeven) + k(xright1 − xeven) + b(ẋright2 − ẋeven)

)
. (3.4)

Here, the label of odd or even refers to the robot’s index. For example, the robots

in the second layer have indices 21 and 22; those in the third have indices 31 to

34. The distinction is simply that odd-numbered robots are connected to the left by

springs and even-numbered ones by dampers. The labels of left and right denote the

specific robots connected in the formation to the left and right of the one governed by

the equation. Each of these robots is connected to two others on the right; “right1”

refers to the one connected by a spring and “right2” that connected by a damper. The
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robot’s mass for dynamical purposes is m. It is assumed that k and b are constant

throughout the tree, but if that is not the case, the individual stiffness and damping

constants must replace k and b in these equations in a manner corresponding to the

spring and damper locations. For n layers of springs and dampers, the total number

of intermediate robots is 2n − 2.

The equation of motion of the last layer of robots is

ẍlast =
1

mlast

2n−1∑
j=1

(kn,j(xn,j − xlast) + bn,j(ẋn,j − ẋlast)) .

The tree has n layers of springs and dampers, so the last layer is connected to the

left by 2n−1 springs and 2n−1 dampers. The indexing is consistent with the other

equations; commas are in place to ensure that n and j are not multiplied and to allay

any concerns about digit overflow for j ≥ 10. In total, the number of second-order

differential equations is 2n (one for each intermediate robot as well as the first and

last). Thus, casting this problem as a system of first-order differential equations for

solution by MATLAB’s ode45 function requires 2n+1 equations.

The response of the half-order system to the same input is determined by stepping

through time according to

xlast(N∆t) ≈ 1

mlast

(∆t)2 +

√
kb√
∆t

×

(
mlast

(∆t)2 (2xlast((N − 1)∆t)− xlast((N − 2)∆t))

−
√
kb√
∆t

N∑
j=1

(−1)j

1/2

j

xlast((N − j)∆t)

+

√
kb√
∆t

N∑
j=0

(−1)j

1/2

j

x11((N − j)∆t)

)
.

(3.5)
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Figure 3.6. Comparison of step response of system with fractional order
1/2, according to Equation (3.5), to full simulation response.

This comes from Equation (3.1) and the Grünwald-Letnikov derivative of Equa-

tion (2.4), adjusted for computational viability. Here N is the number of the instance

in time for which the solution is computed. Given eight layers of robots, k = 2, b = 1,

and each mass between the first and last layer (having total mass mlast = 1) equal

to 0.001, it is shown in Figure 3.6 that the match is accurate. Therefore, it may be

concluded that the tree system with those parameters behaves in a manner suggestive

of order 1/2. Discussion of intermediate mass justifying the choice of m = 0.001 is

forthcoming; that amount of mass is shown to be small enough to be considered neg-

ligible. In theory, all frequencies are excited by a step input, so even though the step

considered here is nonideal, any arbitrary input other than a low- or high-frequency

sinusoid is expected to yield a similar match.
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Figure 3.7. Comparison of step response of system with fractional order 1/2
to those of simulated trees with varying robot layers but constant mass.

The depth of the tree affects the strength of the match between the step responses

of the tree and the half-order system. Including more layers renders the tree more

similar to the infinite tree that is the basis for the approximation, so it is expected to

produce a better match. This is shown to be the case in Figure 3.7. The four trees

whose responses are plotted all have k = 1, b = 0.25, and equal mass. The last layer

of robots locked together has total mass 1, while the remaining mass is distributed

evenly among the intermediate robots. (The first robot is simply the location of the

force input, so its mass is irrelevant.) For n layers of springs and dampers in the tree,

each intermediate mass is 0.015/(2n−1 − 1); it follows that, with six layers of robots

and n = 5, each of those masses would be 0.001. Computational limits affect the

choices of mass and tree depth.
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This treatment of the mass distribution is meant to expose the underlying sig-

nificance of including the intermediate masses in the simulations of the tree. The

intermediate masses are nonzero purely for numerical reasons; if they are taken to

be zero, then all of the second-order derivative terms in the equations of motion for

those tree nodes, all multiplied by 1/m, fail to converge. (Nonzero but sufficiently

small masses present computational challenges for similar reasons.) The presented

structure of the system of equations is viable only because small masses are assigned

to the intermediate robots. However, these numbers represent nothing related to the

hypothetical physical system. The local control schemes governing the spring- and

damper-like connections between robots are assumed to act in spite of the robots’

actual masses and without adding any artificial inertia, as discussed in the opening

of Section 3.2.

For the approximation of half-order behavior to hold, it is desirable to keep the

intermediate masses small enough to be considered negligible. If the choice of mass is

too large, the solution of the system of equations simulating the tree may not match

well with the solution of the approximating fractional-order equation. Figure 3.8

shows some example simulation solutions with eight robot layers, k = 1, b = 1, and

various mass choices, and compares them to the approximation. The highest mass

choice, m = 0.01, is somewhat excessive in the sense that the intermediate masses

are far from negligible; in fact, they are greater than those in the last layer. There, a

total mass of 1 is distributed over 128 robots. It can be seen that more mass in the

system dynamics raises the settling time of the solutions to their steady state.
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Figure 3.8. Comparison of step response of system with fractional order
1/2 to those of simulated trees with varying mass.
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Figure 3.9. Comparison of step response of system with fractional order
1/2 to those of simulated trees with varying robot layers and constant

individual robot mass.

Naturally, such an increase in settling time also occurs when holding the interme-

diate masses constant but adding more layers, thereby increasing the total mass of

the system. In this case, the effect is not as obvious because adding layers improves

the match between the full simulation and the approximation. Still, in excess of some

number of layers, the amount of mass being added to the system is too great to be

overcome by the increased fractionality of the tree. Some response characteristics may

better resemble those of the fractional-order equation solution, but the longer settling

time is evident, as shown in Figure 3.9 for k = 1, b = 0.25, and m = 0.001. From

these results, it should not be concluded that there is an optimal number of layers,

but rather that the comparisons of these versions of the tree are not informative.
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For valid comparisons of trees of different depths, the quantity to be preserved is

the total mass in the simulation of the tree system, as opposed to each intermediate

robot mass. When this is upheld, the comparisons confirm that the solution from

simulating the tree matches the approximation better as more layers are added, such

as in Figure 3.7. The trend that may be perceived from the four trees of different

depths suggests nearly exact convergence to the approximation; the slight discrepancy

can be attributed to the inclusion of intermediate mass in the simulations.

The tree system can be simulated with zero intermediate mass. This requires a

structure for the node equations that differs from Equations (3.3) and (3.4). If those

equations are multiplied by m and evaluated for m = 0, they become

0 = k(xleft − xodd) + k(xright1 − xodd) + b(ẋright2 − ẋodd);

0 = b(ẋleft − ẋeven) + k(xright1 − xeven) + b(ẋright2 − ẋeven).

The highest-order derivative present in these equations is the first. One may consider

a solver-friendly form of these equations to be

ẋodd =
1

b

(
k(xleft − xodd) + k(xright1 − xodd) + bẋright2

)
; (3.6)

ẋeven =
1

2b

(
bẋleft + k(xright1 − xeven) + bẋright2

)
. (3.7)

These look somewhat similar to Equations 3.3 and 3.4. (As mentioned in that dis-

cussion, these must be altered slightly if k and b are not uniform throughout the

tree; for instance, 2b becomes the sum of bleft and bright.) However, the solution of

the system of equations from this form is not straightforward. This follows from the

reduced order of the equations; as simulation time progresses, ẋleft and ẋright2 are not

preserved as state variables because there is no need to compute their derivatives.

The only exceptions to this occur when xleft = x11 or xright2 = xlast; the derivatives of
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those two positions are state variables.

The complication arising from this reduction of order is dynamical coupling; some

subsets of node velocities must be determined simultaneously. Paths of consecutive

dampers dictate this grouping; the velocities of all intermediate nodes along a path of

consecutive dampers must be computed together. This is a result of the dependence

on the left and right node velocities shown in Equation (3.7), as opposed to that on

only the right node velocity shown in Equation (3.6).

Matrix equations can be solved for these subsets of node velocities. These equa-

tions, with one exception, take the form



1 −1 0 · · · 0

−1/2
. . . −1/2

. . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . −1/2

0 · · · 0 −1/2 1





ẋi, odd

ẋi+1, even

ẋi+2, even

...

ẋn, even


=



1
b
k(xleft + xright1 − 2xi, odd)

1
2b
k(xright1 − xi+1, even)

1
2b
k(xright1 − xi+2, even)

...

1
2b
k(xright1 − xn−1, even)

1
2b

(k(xlast − xn, even) + bẋlast)


,

where the left-hand matrix is (n− i+ 1)-by-(n− i+ 1). A more natural way to write

the first entry of the right-hand vector (that, alas, consumes too much space to fit

into the matrix equation) is

1

b
(k(xleft − xi, odd) + k(xright1 − xi, odd)).

The exception applies to the bottom path consisting of only dampers. Its matrix
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equation is



1 −1/2 0 · · · 0

−1/2
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . −1/2

0 · · · 0 −1/2 1





ẋ22

ẋ34

ẋ48

...

ẋn,2n−1


=



1
2b

(bẋ11 + k(x33 − x22))

1
2b
k(x47 − x34)

1
2b
k(x5,15 − x48)

...

1
2b
k(xn,2n−1−1 − xn−1,2n−2)

1
2b

(k(xlast − xn,2n−1) + bẋlast)


,

and the left-hand matrix is (n− 1)-by-(n− 1).

The caveat concerning variations in k and b within the tree recurs here; these

forms assume uniform stiffness and damping. If k and b are not uniform, the matrix

and right-hand vector change. The extent of these changes is not made entirely trans-

parent here, but the derivations from Equations (3.6) and (3.7) (with the necessary

modifications) are straightforward.

In both versions of the matrix equation, the right-hand vector follows a pattern:

each entry contains 1
2b
k(xright1 − xcurr), where xcurr denotes the position of the node

whose velocity is the corresponding entry of the left-hand vector. Note that while

the notation xright1 appears in all but one entry, it is each time referring to a different

node, the one connected to the right of xcurr by a spring. (For all but the bottom

path, the first entry is multiplied by 1
b

instead of 1
2b

; that holds in this discussion.)

The first and last entries each have an additional term: 1
b
k(xleft−xcurr) (or 1

2b
bẋ11) and

1
2b
bẋlast, respectively. In some cases, the matrix and both vectors are 1-by-1; when

this occurs, the matrix is 1, xcurr = xn, odd (or x22 if n = 2), and both additional

terms are added to the right-hand side. In cases where the matrix is 2-by-2, it is the

upper-left 2-by-2 block of the larger general form.

These matrices combine to produce 2n − 2 first-order differential equations, one

for each intermediate robot. The governing equations for the first and last robot
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Figure 3.10. Comparison of step response of system with fractional order
1/2 to those of simulated trees with varying robot layers and zero

intermediate mass.

layers do not change, so the total number of first-order equations for the tree system

is 2n + 2. With relative and absolute tolerances on the order of 10−14, MATLAB’s

ode45 function can solve the equations and verify that adding layers causes the step

response to approach that of a half-order system. This is shown in Figure 3.10; the

figure is similar to Figure 3.7, but the trend toward the approximation is slightly

more convincing, as expected.

The accuracy of the fractional-order equation solution as an approximation of

the full system response exhibits some robustness to variations in the choices of

stiffness k and damping b. Figure 3.11 demonstrates this for seven layers of robots

with m = 0.001 for each robot in the intermediate layers. For each simulation,
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Figure 3.11. Step responses of system with fractional order 1/2 shown by
dashed lines and compared to those of simulated trees with different

stiffness and damping.

an approximation is computed from a fractional-order differential equation with the

corresponding k and b, and all of these (shown with dashed lines) match well.

Equation (3.5) clearly reveals that k and b do not have individual significance in

its solution; rather, the influential quantity is the product kb. As approximations

for responses of the full tree systems, solutions of Equation (3.5) are viable only if k

and b are somewhat close to one another. This is illustrated in Figure 3.12 for seven

robot layers and m = 0.001, as in Figure 3.11, for pairs of k and b that multiply to

kb = 1. It can be seen that there is more flexibility for differences between k and b if

b is the larger of the two.
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Figure 3.12. Comparison of step responses of system with fractional order
1/2 to those of simulated trees with constant kb.
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Eventually, the robustness expires; the more extreme examples shown in Fig-

ure 3.12 likely render the approximation not accurate enough for many purposes. In

those cases, the resistive property, stiffness or damping, with the larger constant is

dominant over the other. With an eye toward ease of control of the overall system

and monitoring it through the lens of fractional order, it would not be desirable to

create such a strong imbalance in the system. Still, under minor imbalances, the

solution of the fractional-order differential equation holds as an approximation to the

simulated response of the full system.

It is thus established that the tree formation is of order 1/2, or rather, it is

expected to be. However, a system’s frequency response and corresponding responses

to time-domain inputs can change if there is damage to the components. This is the

next problem of interest: what happens to the tree when its component constants are

not uniformly the same and how the fractional-order governing equation may differ

as a result.

3.2.2 Damaged Coverage Formation

A spring with reduced stiffness or a damper with a reduced damping constant

acts with less force on the two masses attached to it. In the context of the toxic

waste spill, damage to these mechanical components in the model corresponds to a

weakening of the network’s control effort to maintain the desired spacing between

the robots. The components with the greatest effect on the overall system response

are the spring and damper in the first layer because they are each directly connected

to the driving robot, which means that the effects resulting from damage propagate

through the entirety of the tree.
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3.2.2.1 Finite Formation

The constants of the first spring and damper are referenced as k11 and b11 re-

spectively. The default constants throughout the tree remain k and b, and there are

eight layers of robots. First consider damage to the first spring: k11 = 0.1k. In

the Bode plot for this system, a notably new result is present: the frequency band

that previously demonstrated a phase difference of −45 degrees now causes a phase

difference of approximately −60 degrees. This is reflective of a system of order 2/3;

the distinction is illustrated in Figure 3.13, from [39]. A comparison between the

time-domain responses of this tree and the approximation, a system of order 2/3,

shows agreement between the two, as illustrated in Figure 3.14, also from [39]. The

time-domain response for the approximation is given by

xlast(n∆t) ≈ 1

mlast

(∆t)2 +
M(kb)2/3

(∆t)2/3

×

(
mlast

(∆t)2 (2xlast((n− 1)∆t)− xlast((n− 2)∆t))

− M(kb)2/3

(∆t)2/3

n∑
j=1

(−1)j

2/3

j

xlast((n− j)∆t)

+
M(kb)2/3

(∆t)2/3

n∑
j=0

(−1)j

2/3

j

x11((n− j)∆t)

)
.

Here M is a magnitude adjustment, in this case −7 dB. This is incorporated to

improve the approximation by matching its frequency response magnitude to that

of the full system at a frequency of 1 rad/s. That frequency is chosen because it

is logarithmically central and therefore expected to be part of the frequency band

showing fractional-order behavior. In practice, it is seen in Figure 3.13 that 1 rad/s

is close to the edge of that frequency band. By matching at a different frequency, a
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Figure 3.13. Bode plot for undamaged system and system with damage to
first spring, kd = 0.1k.

higher one (such as 3 rad/s) in this case, there is room for improvement in the match

of Figure 3.14 as a result of a different choice of M .

The magnitude adjustment is justified by the inflation in frequency response mag-

nitude from the undamaged case to the damaged case, as shown in Figure 3.13. The

combination of springs and dampers is weakened in the damaged case, so the motion

of the first robot is not resisted as strongly by the components; this may be likened

to a circuit with reduced impedance. Thus, more of the force on the first robot is

transmitted to the last layer of robots. From a nominal transfer function of (kbs)−1/2,

the hypothesis for the damaged system’s transfer function is not truly (kbs)−2/3 but

rather an amplification thereof. Introducing M implements this amplification within

the computation of the time-domain response.
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If the spring is restored to its normal stiffness k while b11 = 0.1b, a result of similar

nature appears. In this instance, the Bode plot shows a phase difference near −30

degrees, indicative of a system of order 1/3; this Bode plot is given in Figure 3.15,

from [39]. As in the previous case, the time-domain responses of the tree and an

approximation, a system of order 1/3, match well; these are shown in Figure 3.16.

The response for this approximation is given by

xlast(n∆t) ≈ 1

mlast

(∆t)2 +
M(kb)1/3

(∆t)1/3

×

(
mlast

(∆t)2 (2xlast((n− 1)∆t)− xlast((n− 2)∆t))

− M(kb)1/3

(∆t)1/3

n∑
j=1

(−1)j

1/3

j

xlast((n− j)∆t)

+
M(kb)1/3

(∆t)1/3

n∑
j=0

(−1)j

1/3

j

x11((n− j)∆t)

)
.

The magnitude adjustment M is −3 dB, again included to draw the approximation’s

frequency response magnitude closer to the full system’s at a frequency of 1 rad/s.

These two results are fully analogous in spite of the fact that k = 2 and b = 1; this

suggests some sort of duality between the damage cases without dependence on the

magnitudes of the constants.

The order shifts perceived here align with intuition. A decrease in stiffness in-

creases the order from 1/2; in other words, it pushes the order toward 1, the same

order native to the damping elements. Likewise, a decrease in damping lowers the

order toward 0, implying that the springs attain greater influence over the system.
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Figure 3.15. Frequency responses for undamaged system and system with
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50



0 5 10 15 20

t

0

0.5

1

1.5

x la
st

b
d
 = 0.1

frac order 1/3

Figure 3.16. Fractional and exact time-domain responses for system with
damage to first damper.

51



3.2.2.2 Infinite Formation: Asymptotic Damage

This discussion concerns a formation of the same type, but having infinitely many

layers, to show that the damage results from the finite formation, an approximation

of a system of order 1/2, are to be expected from a system that truly has order

1/2. Here, the leftmost stiffness and damping constants, k1 and b1 respectively,

are changed separately to either zero or infinity; only the leftmost components are

discussed because those cases present the effects of damage most clearly.

Without damage, that is, if k1 = k and b1 = b, the components can be combined in

parallel and series, and self-similarity can be invoked. The transfer function satisfies

G∞(s) =
1

1
1
k1

+G∞(s)
+ 1

1
b1s

+G∞(s)

=
1

k1
1+k1G∞(s)

+ b1s
1+b1sG∞(s)

.

The result for G∞(s) is as before:

G∞(s) =
1√
kbs

, (3.8)

so the system has order 1/2. Hereafter, this transfer function resulting from the

limiting case of infinitely many generations is called G1/2(s).

If either component’s constant is changed such that k1 6= k or b1 6= b, then G∞

is no longer equal to G1/2. Reducing k1 to zero alters the formation; with the spring

having no effect, the damper acts as though it is in series with a formation having

one fewer layer but still having transfer function G1/2(s):

G∞(s) =
1

b1s
+G1/2(s) =

1

b1s
+

1√
kbs

,

a straightforward combination of a first-order system and a 1/2-order system. By
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analogy, when b1 is reduced to zero,

G∞(s) =
1

k1

+G1/2(s) =
1

k1

+
1√
kbs

,

i.e., the spring of order 0 is placed in series with a tree formation of order 1/2.

Correspondingly, when k1 goes to infinity, that half of the formation behaves as

the undamaged full formation of order 1/2. Therefore, G1/2(s) is placed in parallel

with a series combination of a damper and another instance of G1/2(s):

G∞(s) =
1

1
G1/2(s)

+ 1
1

b1s
+G1/2(s)

=
1√

kbs+ 1
1

b1s
+ 1√

kbs

.

Likewise, when b1 goes to infinity, G1/2(s) is placed in parallel with a series combi-

nation of a spring and another transfer function of order 1/2:

G∞(s) =
1

1
1
k1

+G1/2(s)
+ 1

G1/2(s)

=
1

1
1
k1

+ 1√
kbs

+
√
kbs

.

The frequency responses for these parameter variations are displayed in Fig-

ures 3.17 and 3.18, from [39]. The curves labeled “no damage” show the frequency

response for the system of Equation (3.8) that has order 1/2 and, in turn, a phase

difference of −45◦ and a magnitude slope of −10 dB/decade. The other cases exhibit

other orders, as evidenced by their varying magnitude slopes and phase difference

values. These scale linearly with order; order 0 maps to 0 dB/decade and 0◦, order

1 maps to −20 dB/decade and −90◦, and so on.

The curve representing k1 = kd = 0 in Figure 3.17 has a phase difference more

negative than −45◦, suggesting an order greater than 1/2; this is consistent with

the physical interpretation that reduced stiffness results in a relatively heightened

influence from the damper, drawing the overall order closer to 1. Analogously, the

curve representing b1 = bd = 0 has a phase difference less negative than −45◦; reduced
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Figure 3.17. Frequency responses for limiting cases of extreme damage.

damping pushes the overall order toward 0, the order characteristic of a spring.

The frequency responses for the systems in which one constant goes to infinity

are shown in Figure 3.18. If k1 is made infinite, the order somewhat greater than 1/2

is explained by a greater damping effect that follows from placing a replica of the

original system, having order 1/2, in parallel with a series combination of a damper

and another replica system of order 1/2. An infinite b1 has the analogous effect of

combining two 1/2-order systems and a spring, yielding an overall order less than

1/2.
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Figure 3.18. Frequency responses for limiting cases of extreme stiffness and
damping increase.
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To make this contribution more thorough, analysis of parameter variations falling

between these limiting examples is needed. Chapter 4 outlines a fractional-order

system identification procedure to measure changes in order resulting from damage

or any other operational change. First, though, the need for such a procedure is

demonstrated with responses from varying damage cases.

3.2.2.3 Infinite Formation: Intermediate Damage

The limiting cases of zero or infinite stiffness or damping lead to transfer functions

suggesting that the component’s new value effectively changes the construction of the

system. In contrast, intermediate changes to k1 or b1 preserve the construction, but

the component constants are no longer uniform, so self-similarity is lost. In general,

changes to k1 and b1 give rise to the transfer function

G∞(s) =
1

1
1
k1

+G1/2(s)
+ 1

1
b1s

+G1/2(s)

=
1

1
1
k1

+ 1√
kbs

+ 1
1

b1s
+ 1√

kbs

.

While this transfer function cannot be simplified further, it can be evaluated for arbi-

trary constants k1 and b1. With default constants of k1 = k = 2 and b1 = b = 1, the

frequency responses under varying stiffness, k1 ∈ {2× 10−4, 2× 10−3, . . . , 2× 104},

are shown in Figure 3.19, and the frequency responses of the same transfer func-

tion for b1 ∈ {10−4, 10−3, . . . , 104} are shown in Figure 3.20; both figures appear in

[39]. These damage cases are extensions of those displayed in Figures 3.13 and 3.15,

the difference being that those two are concerned with finite representations of the

coverage formation. It appears that factors of 10−5 and 104 are adequate lower and

upper bounds for these progressions because those frequency responses match well

with Figures 3.17 and 3.18.

Order shifts are obvious in both Figures 3.19 and 3.20, and they are analogous and
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Figure 3.19. Frequency responses for various spring damage cases showing
decreasing magnitude for increased stiffness.

opposite. However, in many cases, the phase difference changes significantly over the

frequency window shown. Since these versions of the system do not display specific

fractional orders over wide frequency bands, a computational system identification

method is imperative in quantifying order.

3.3 Monitoring Insights

This section contains findings from other instances of damage in the robot for-

mation example. These illustrate the most promising ways in which fractional order

measurement might be applied for monitoring. Apparent limitations of the approach

and ideas for its implementation in experimental settings are also included.
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Figure 3.20. Frequency responses for various damper damage cases showing
decreasing magnitude for increased damping.
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3.3.1 Damage Detection

While the spring and damper of the first layer are the most influential components,

the others show varied effects on the frequency response as well. The components

serially connected with exclusively like elements contribute the most to the overall

effective stiffness and effective damping of the tree; these are the springs along the

upper edge of the tree diagram and the dampers along the lower edge. As such,

effects of damage to these components are greater than those resulting from damage

to others, so they are collectively called the critical components.

Perhaps naturally, there is a qualitatively tangible progression in the frequency

response from damage to the most critical component to that of the least and, in

turn, of no damage. In the case of the springs, for the damage case of ki,1 = 0.1k as

before (with i ∈ [1, . . . , n] for n layers of springs and dampers), the differences occur

for medium and high frequencies. There is a medium-frequency band showing a phase

difference of approximately −60 degrees, but this band contracts as the damage is

given to less critical springs. High-frequency behavior similar to that of the undam-

aged system encroaches upon that territory. Thus, for medium-high frequencies, the

phase difference is closer to the −45 degrees of the undamaged system. This damage

progression for critical springs (CSs) is shown for a formation having eight layers of

robots (seven layers of springs and dampers) in Figure 3.21.
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Figure 3.21. Damage progression for critical springs compared to
undamaged frequency response.
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Figure 3.22. Damage progression for critical dampers compared to
undamaged frequency response.

Results for the dampers are opposite. The damage case of bi,last = 0.1b causes a

progression of varying frequency response behavior in the low- and medium-frequency

areas on the Bode plot. The medium frequencies show a phase difference near −30

degrees, while the low frequencies cause responses similar to that of the undamaged

system. The effect for decreasingly critical damage is that medium-low frequencies

give a phase difference near −45 degrees. The frequency responses for these cases

of damage to critical dampers (CDs), for a formation having seven layers of springs

and dampers, are plotted together in Figure 3.22. In all of these cases, for springs

and dampers alike, the phase difference as a function of frequency acquires inflection

points; the decrease from 0 to −90 degrees is clearly not monotonic.

These progressions imply that the components on the left of the tree are more
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important to the functioning of the formation than those on the right. This may be

the case because the robots on the left are highly connected to their right. However,

the truncation of the tree at, in this case, seven layers of springs and dampers means

that the approximation of the transfer function as half-order is imperfect in some

contexts. If the formation is extended to the theoretical ideal of infinitely many

layers, rendering the half-order transfer function a perfect description, then every

robot has the same connectedness. It is unclear how the frequency responses of such

trees undergoing equivalent damages in different locations might differ, but series and

parallel combinations along the lines of the computations for Figures 3.19 and 3.20

would yield those results.

3.3.2 Limitations

Damages of this nature are also considered for the components in the middle of

the tree, that is, the components that are not critical. In these cases the nature of

the “critical” label is made clear because there is little to no effect on the system’s

frequency response. While it is necessary that some coefficient in the high-order

governing equation must change under this type of damage, the resulting dynamics

are not visibly different from those of the undamaged system.

There are scenarios in which damages to these intermediate components may

combine with one another to produce a more tangible effect. For example, reducing

all of these constants by a factor of 1/10 results in a frequency response with no

band of frequencies to suggest fractional-order dynamics. That is to be expected

because this instance of the tree is essentially two elements: a series of springs in

parallel with a series of dampers, with all effects from the damaged components in

between considered negligible by comparison. The governing equation of this damped

harmonic oscillator is well known to be of integer order.

In light of the overall transfer function of (kbs)−1/2 for the undamaged system, it
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is evident that the quantity kb has importance for this approach to damage detection.

Hence, any sort of alteration to the system that might preserve kb would be difficult

to detect. The nature of a physical example of damage that would bring about this

result is not clear.

3.3.3 Implementation

Implementation of order measurement as a system monitoring method is hereby

established in principle. One must collect frequency response data from operational

and damaged versions of the same system, noting the orders of behavior that appear

in these frequency responses. An order higher than expected implies damage to a

spring, and lower, a damper, or the corresponding physical relationship modeled by

either of these components.

The frequency band in which the response is abnormal can serve as an indicator

of the severity of the damage. In the case of a multi-robot or other network system,

damage near locations with high connectedness is implied by noticeable response

changes over wide frequency bands. Effects contained within narrower frequency

bands suggest less critical damage. These interpretations can translate to other types

of similarly modeled systems if one assumes that the damage is localized, as in the

scenarios detailed here.

This chapter has explained the use of fractional-order differential equations as a

monitoring tool for systems such as formations of cooperating robots. The damage

of interest may be detected by measuring the fractional order of dynamics present in

the system’s governing equation. Considering the broad space of systems that can be

modeled with spring and damper elements, the principles outlined here may inform

a new systemic health monitoring approach that is widely applicable.
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CHAPTER 4

FRACTIONAL-ORDER SYSTEM IDENTIFICATION TO DETECT CHANGES

IN ORDER

The previous chapter establishes fractional order as a status indicator. Mea-

surement of changes in order may provide a foundation for health monitoring of

high-order engineering systems such as the robot formation example. This chapter

explains a computational method of system identification that lends itself to gen-

eral applicability for measuring order changes. The method presented here can serve

as the centerpiece of a new set of tools for system monitoring through the lens of

fractional-order modeling. Much of this content appears in [39].

4.1 Identification Procedure

The method developed in this research was inspired by [54]. It is therefore prudent

to outline that method for clarity so that the modifications made for generality can

be conveyed most clearly. The starting point is a set of data containing a frequency

response, denoted G(s), to be matched, or identified. The end result, a transfer

function that matches G(s) as well as possible, is of the form

F (s) =
K0

sd0
B(s)

A(s)
=

K0

n∑
k=0

bks
βk

sd0
d∑

k=0

aks
αk
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where a0 = b0 = 1, α0 = β0 = 0, and αk, βk ∈ R. For illustration of the effects of

these latter choices on the procedure, an equivalent representation of this form is

F (s) =
K0

sd0
bns

βn + · · ·+ b1s
β1 + 1

adsαd + · · ·+ a1sα1 + 1
, (4.1)

ensuring that there is a constant, K0, in the numerator. A proper transfer function

can always be manipulated to satisfy that condition, but in general, it may not be

possible to have a constant in the denominator as well. For this reason, s to the power

d0 is factored out of the denominator, and d0 can take a nonzero value if needed.

These measures provide some flexibility, but not in a way that is integrated into

the identification. One must choose the gain K0 and the origin pole multiplicity d0

at the beginning, along with αk and βk. A workaround for this limitation is revealed

later in the discussion.

For the sake of solution by the simplex method, the result is posed as a state

vector:

w =

[
b1 · · · bn a1 · · · ad wn+d+1

]T

,

where all entries of w ≥ 0. The entry wn+d+1 is expressly for inclusion in the linear

constraints, which set a bound on the error metric

R(jω) =
(jω)d0

K0

A(jω)(F (jω)−G(jω)), (4.2)

specifically its L∞-norm,

‖R(jωi)‖ = max(|Re(R(jωi))|, |Im(R(jωi))|).

In Equation (4.2), the denominator A(jω) of the identified transfer function F (jω)

is factored out so as to highlight the subtraction of the true frequency response G

from F . The number of frequencies comprising G(jω) is denoted nf, so there are
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nf real and nf imaginary parts of R(jω). The method of [54] iteratively drives the

largest absolute value of these 2nf numbers to a minimum. The formulation casts

this problem as the minimization of one variable, a linear objective function, so the

simplex method may be employed.

While convenient, that objective function considers only one frequency at a time,

neglecting all other frequencies of G(jω) until a different real or imaginary part of

R(jω) becomes the largest in magnitude. The approach developed here diverges from

[54] by asserting that it is desired to treat all frequencies with equal weight at every

step. The objective function chosen for this system identification method is

J =

nf∑
i=1

∣∣∣∣∣∣∣∣∣∣∣

(
n∑
k=0

bk(jωi)
βk

)
− (jωi)

d0

K0

(
d∑

k=0

ak(jωi)
αk

)
G(jωi)

(jωi)d0

K0

(
d∑

k=0

ak(jωi)
αk

)
G(jωi)

∣∣∣∣∣∣∣∣∣∣∣
,

or equivalently,

J =

nf∑
i=1

∣∣∣∣∣B(jωi)− (jωi)
d0

K0
A(jωi)G(jωi)

(jωi)d0

K0
A(jωi)G(jωi)

∣∣∣∣∣
and, in turn,

J =

nf∑
i=1

∣∣∣∣∣
(jωi)

d0

K0
A(jωi)(F (jωi)−G(jωi))

(jωi)d0

K0
A(jωi)G(jωi)

∣∣∣∣∣ .
Therefore, the quantity being minimized in this procedure is

J =

nf∑
i=1

∣∣∣∣F (jωi)−G(jωi)

G(jωi)

∣∣∣∣ .
This is a nonlinear objective function, so the simplex method is no longer able to

solve the problem. The coefficients

v =

[
b1 · · · bn a1 · · · ad

]T
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are determined by nonlinear optimization in MATLAB. The interior-point and se-

quential quadratic programming (SQP) algorithms of the MATLAB function fmincon

are considered, along with the pattern-search algorithm (function patternsearch).

When the interior-point algorithm is employed, every entry in the state vector is

nonzero, so the result for F (s) has terms for every order in α and β. This demon-

strates the relative dominance of each order. In contrast, the other two algorithms

are capable of returning some coefficients of zero in the state vector, declaring that

certain orders are not present in the optimal transfer function.

The function fmincon is a tool for constrained optimization, so an adaptation

of this problem to serve as input to the function requires constraints. One may

intuitively suggest that all entries in the solution vector v be greater than or equal to

zero based on stability theory, and indeed, that is an appropriate line of reasoning.

However, the set of constraints chosen here, for both fmincon and patternsearch,

is slightly different: all entries of v ≥ 0, except a1, b1 ≥ −1. These two coefficients

correspond to constants (exponents α1 = β1 = 0) that, by virtue of these constraints,

are able to cancel the built-in 1’s in the numerator and denominator of Equation (4.1);

this generalizes the form of the transfer function returned by the optimization.

4.2 Introduction of Driving Formation

Later in this chapter, the identification procedure is demonstrated on two me-

chanical models of systems. One is the coverage system of Chapter 3 resembling

a tree diagram. The other is a group of autonomous robotic vehicles traveling to-

gether. This formation has two priorities, specifically preserving a desired spacing

and velocity. The driving formation is shown in Figure 4.1, from [39].

In a manner similar to the example of the coverage formation, the driving forma-

tion can be cast as a mechanical system, as shown in Figure 4.2, from [39]. Spring

elements with constant k enforce a specified distance between vehicles. Damping
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Figure 4.1. Diagram of mobile robots traveling in a line.

k

b

u

x

Figure 4.2. Schematic showing springs and dampers in driving formation.

elements with constant b are connected from each mobile robot to a moving ground

having the desired velocity relative to the road. These are meant to ensure that the

robots maintain that velocity as well.

The mechanical arrangement in Figure 4.2 is analogous to a ladder circuit of resis-

tors and capacitors having behavior of order 1/2 in its relationship between current

and voltage, as shown in [50]. A corresponding result is evident in the relationship

between input force and displacement of the leftmost vehicle in the driving forma-

tion. The frequency response has a phase difference of −45◦ over a wide band of

frequencies, as shown in Figure 4.3 for the case of 1000 vehicles with k = 1 and b = 1

throughout the formation.
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4.3 Results for Example Cases

With the identification procedure in hand, the tree system example of Chapter 3

and line of driving vehicles, both representing robot formations, can be extended.

Recall that the transfer function of the undamaged tree system is derived to be some

constant multiplied by s−1/2. Damage to the first spring causes a shift toward s−2/3;

damage to the first damper, toward s−1/3. These relationships are evident upon

examination of the frequency responses for these versions of the system, shown in

Figures 3.13 and 3.15, where respective phase differences of −45◦, −60◦, and −30◦

are prominent over some frequency band. Transfer functions of the same orders are

sought as identification results from running the procedure on the corresponding tree

system data sampled over a representative frequency band.

In a manner similar to [54], αk (with k starting at 1) is set to 0, 1/6, . . . , 13/6

so that over two integer orders of dynamics may be identified. Incrementing by

1/6 is especially suitable for the coverage formation example because the results are

expected to affirm the presence of orders that are integer multiples of 1/6: 1/3, 1/2,

and 2/3. However, βk is set to 0 only, ensuring that the numerator is a constant.

Following from this choice, the computationally obtained results may transparently

show the dominance of individual orders with respect to the others; these orders may

be read directly from the denominators of the identified transfer functions.

The system identification procedure is expected to agree with the theoretical

results, and the system is expected to be undamaged. Therefore, the starting point

chosen for the optimization is

v0 =

[
b1 a1 a2 · · · a14

]
=

[
0 −1 0 0 1 0 · · · 0

]T

,
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where the 1 is assigned to a4 to yield s−1/2. In general, if the 1 is assigned to ak with

k > 1, the transfer function represented by this starting point is s−(k−1)/6. A detailed

expression of the starting transfer function corresponding to such a choice of v0 is

F0(s) =
0s0 + 1

s(k−1)/6 − s0 + 1
=

1

s(k−1)/6
.

The identification results are as follows. In presenting the transfer functions, both

fraction components are scaled so that the highest-order coefficient in the denomina-

tor is 1.

4.3.1 Driving Formation

For the vehicles traveling in a line, the frequency band of interest for 1000 vehicles

is from 10−5.4 to 10−1.4 rad/s, so logarithmic spacing with a step size of 0.1 powers

of 10 leads to 41 frequencies (nf = 41). With the interior-point algorithm employed,

F (s) is given by

F (s) =
4.5

s13/6 + · · ·+ 1.1s+ · · ·+ 4.5s1/2 + · · ·+ 2e−4

and has error J = 0.3583. The SQP algorithm gives

F (s) =
3.5

s13/6 + s+ 0.1s2/3 + 3.4s1/2 + 1e−4

with error J = 0.3495. The pattern-search algorithm gives

F (s) =
38

s13/6 + · · ·+ 13s+ · · ·+ 37s1/2 + 4e−4

with error J = 0.3557. In each case, considering the relative magnitudes of the

coefficients, order 1/2 is prominent. Here, the SQP algorithm performs best, but all
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Figure 4.4. Bode plot of actual and identified transfer functions for the
driving formation.

are similarly successful. Figure 4.5 shows the favorable comparison between G(s) and

the three results for F (s). The results from the interior-point and SQP algorithms

nearly overlap in the figure.

For the ladder arrangement with 1000 robots, k = 100, b = 1, and 41 frequencies

(nf = 41) logarithmically spaced from 10−3.4 to 100.6 rad/s (experimental boundaries

on the dynamics of interest), the transfer functions are computed by the method of

[54] and both integer- and fractional-order versions of the procedure developed here

(with the SQP algorithm). The last of these is the best, given by

F (s) =
7

s7/6 + 2s+ s2/3 + 74s1/2 + 0.03
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Figure 4.5. Actual and identified frequency responses for undamaged
driving formation.

with error J = 0.3495. Note that the frequency window is shifted by two powers of

10 to match the shift in k/b (from 1 to 100) and that the error is the same. The

comparison of each resulting F (s) to G(s) is shown in Figure 4.5; the same results

are shown in [39]. It is clear that order 1/2 is prominent.

Figure 4.5 shows the advantage of a fractional-order model relative to an integer-

order one in accuracy; the optimization is allowed to explore as high as fourth order

but returns a relatively poor phase difference match. The figure also shows that the

nonlinear objective function of the method developed here (“F(s) frac-order”) per-

forms better than the linear one of [54] (“F(s) by linear ID”) on the same fractional-

order system identification problem.
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4.3.2 Coverage Formation

This discussion concerns the undamaged tree system with eight generations of

robots, stiffness k = 2, and damping b = 1. The frequency band of interest is from

10−0.8 to 101.6 rad/s, so with logarithmic spacing by 0.1 powers of 10, nf = 25. With

the interior-point algorithm, F (s) is given by

F (s) =
8.9× 108

s13/6 + · · ·+ 1.2× 109s1/2 + 4.1× 107s1/3 + · · ·+ 1.1× 106

and has error J = 0.4144. The SQP algorithm gives

F (s) =
562

s11/6 + 11s2/3 + 776s1/2 + 10

with error J = 0.3951. The result from the pattern-search algorithm is identical.

Order 1/2 is declared dominant by all three algorithms; this result agrees with the

visual interpretation of the frequency response from [38]. However, the degree of

prominence bears closer examination. The coefficient of s1/2 is over 70 times the next

largest before rounding, whereas for the driving formation, that multiplier is about

34. This suggests that the order dynamics are distributed slightly more evenly for

the driving formation. In contrast, the coverage formation possesses order 1/2 more

exclusively and, as a result, promises to be easier to monitor. The transfer functions

F (s) and G(s) are compared in Figure 4.6. The three identified results essentially

overlap.
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Figure 4.6. Bode plot of actual and identified transfer functions for the
undamaged system.

75



For the system with damage to the first spring (k11 = 0.1k), and keeping the

frequency band of 10−0.8 to 101.6 rad/s, the identified transfer function returned by

the interior-point algorithm is

F (s) =
3944

s13/6 + · · ·+ 2733s2/3 + 32s1/2 + · · ·+ 213

and has error J = 1.3353. The SQP algorithm gives

F (s) =
3905

s13/6 + 2741s2/3 + 225

with error J = 1.3219. Here, again, the pattern-search algorithm matches the SQP

result. In these results, order 2/3 has the largest coefficient. The frequency responses

of F (s) each match the data well and are almost identical to one another, as illustrated

in Figure 4.7.

In the case of damage to the first damper (b11 = 0.1b), with the same frequency

band of 10−0.8 to 101.6 rad/s, the optimization result given by the interior-point

algorithm is

F (s) =
1.4× 1010

s13/6 + · · ·+ 1.7× 108s1/2 + 1.2× 1010s1/3 + · · ·+ 8.3× 107

and has error J = 0.9541. The SQP algorithm gives

F (s) =
143

s4/3 + s7/6 + 130s1/3

with error J = 0.9120. To the given precision, the pattern-search result is identical

and has the same error. Here, order 1/3 is dominant in each result. The comparison

between these frequency responses and the tree formation’s is shown in Figure 4.8.

As in the previous cases, the three identified results all virtually overlap.
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Figure 4.7. Bode plot of actual and identified transfer functions for the
spring damage case.
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The frequency band used in the identification was chosen experimentally for the

purpose of best capturing the dynamics of interest. However, the results are strong

enough to suggest robustness to this choice of frequency band; one might choose

somewhat different boundaries or alter the frequency resolution and still obtain con-

vincing results.

As can be seen in the Bode plots, the transfer functions F (jω) match in magnitude

almost exactly with G(jω), but the two occasionally disagree by a few degrees in

phase. This error may be attributed to the fact that, since the numerator is forced

to be constant so as to show the dominant orders, F (s) has no zeros. It follows that

nonminimum phase dynamics cannot occur in the results, so the phase curves can

only decrease as frequency increases.

The results presented to this point, for both the driving and coverage formations,

expose the relative merits of the three algorithms under consideration. The interior-

point algorithm is, in theory, the most informative; it gives a coefficient for every

order included in the optimization. Consequently, though, the interior-point algo-

rithm performs worse than the others, and upon further examination, the reason is

clear. Forcing every order to have a nonzero coefficient constrains the appearance of

the resulting frequency response. For example, a perfect match with a theoretical

fractional integrator possessing only one order and, in turn, a constant phase differ-

ence (e.g. −45 degrees for order 1/2), is not possible; the other powers of s present

in the identified result must manifest themselves, at least at low or high frequencies.

The value of comparing the relative prominence of irrelevant orders does not justify

proceeding with an inferior algorithm for the identification problem.

In many cases, the SQP and pattern-search algorithms give identical results to a

precision several orders of magnitude below the highest coefficient. At times, however,

the SQP algorithm performs better and sets itself apart (only one of these cases has

appeared so far, but there are others). Therefore, despite the profoundly intuitive
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nature and generally effective performance of pattern search, SQP is the algorithm

employed for the remainder of the results presented. The possibility of linking the two

by choosing the solution from pattern search as the input to SQP has been explored,

but this has not provided any additional reduction in the error metric compared to

SQP on its own.

4.4 Varied Damage Cases

The value of the proposed monitoring technique depends on the notion that the

severity of the damage influences the response of the system. This section demon-

strates such a trend for both example systems.

4.4.1 Driving Formation

Consider the dynamics when the driving formation system is damaged; specifi-

cally, consider the version of the system with the leftmost spring having a stiffness

different from its nominal value. Such a damage case causes a shift in phase dif-

ference from −45◦ toward 0◦ over a progressively narrower frequency band. This is

illustrated in Figure 4.9, from [39], for kd = 10 and 1 instead of 100.

Another example of interest is the case of a spring-damper pair for which the

stiffness and damping change in opposite directions. The challenge posed by a damage

case of this nature is that the change in magnitude is nonuniform, but the phase curve

is different enough to suggest a dynamical change. This dilemma gives rise to a need

for sensitivity in health monitoring. Figure 4.10, from [39], shows the frequency

responses when the component constants are changed from k = 100 and b = 1 to

kd = 1 and bd = 5 for different spring-damper pairs. The examples of Figures 4.9 and

4.10 demonstrate that the severity and location of damage influence the frequency

response in distinct ways.

80



-100

-50

0

50

100

| G
( 

j 
 )

 | 
(d

B
)

10-6 10-4 10-2 100 102 104
-90

-45

0

 G
( 

j 
 )

 (
de

g)

no damage
k

d
 = 10

k
d
 = 1

Frequency  (rad/s)

Figure 4.9. Frequency responses for driving formation, including damage
cases.

81



-100

-50

0

50

100

| G
( 

j 
 )

 | 
(d

B
)

no damage
pair 1 damaged
pair 10 damaged
pair 25 damaged
pair 50 damaged

10-6 10-4 10-2 100 102 104
-90

-60

-30

0

 G
( 

j 
 )

 (
de

g)

Frequency  (rad/s)

Figure 4.10. Frequency responses for driving formation with reduced
stiffness and increased damping applied to different component pairs.

82



When the first spring is damaged to stiffness kd = 10, the procedure developed in

this research gives

F (s) =
5

s13/6 + 28s1/2 + 8s1/3

with error J = 5.0464. This is informative in that it indicates a shift away from

order 1/2, i.e., the coefficient is only a few times greater than that of any other order.

However, certainty about the extent of that shift is lacking; the optimization yielding

that result examines only orders that are multiples of 1/6. It is possible to isolate the

true order of the system by refining the order resolution, for instance to multiples of

0.01. That result is

F (s) =
7

s2.01 + 25s0.44 + 19s0.43

with error J = 4.0609. It is therefore clear that this version of the system has a

dynamical order of about 0.44. Both of these results are displayed in Figure 4.11,

from [39].
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Figure 4.11. Actual and identified frequency responses for driving
formation with moderately damaged first spring.
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The more severe damage case, with stiffness reduced to kd = 1, initially leads to

a transfer function of

F (s) =
9.6

s4/3 + 5.7s7/6 + 3.2s1/3 + 9.3s1/6

with error J = 6.1085. These coefficients are relatively close, so while order 1/6

is suggested, the interpretation of this model is not obvious. Refining the order

resolution gives

F (s) =
3.9

s1.25 + 1.6s1.24 + 5.5s0.22

with error J = 5.6145. This result offers more clarity by showing the most promi-

nent order to be 0.22. If the potential control strategy permits, recognizing some

dynamics of approximate order 1.24 may be beneficial; however, this identification

is primarily meant to determine one order. The frequency responses for these two

transfer functions are plotted in Figure 4.12, from [39].
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Figure 4.12. Actual and identified frequency responses for driving
formation with severely damaged first spring.
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The case of magnitude-invariant damage to the leftmost spring-damper pair, as

shown in Figure 4.10, returns a transfer function of

F (s) =
0.2

s7/6 + 0.5s1/3 + 0.06s1/6

with error J = 4.2034. Damage to the 10th spring-damper pair yields

F (s) =
0.2

s+ 0.8s5/6 + 0.4s1/3 + 0.03s1/6

with error J = 6.6344. Damage to the 25th spring-damper pair yields

F (s) =
0.1

s2/3 + 0.2s1/2 + 0.05s1/6

with error J = 5.9051. Damage to the 50th pair yields

F (s) =
0.2

s2/3 + 1.4s1/2 + 0.01

with error J = 4.4924. Even with an order resolution of 1/6, an order shift based

on damage location is clear. At first there are identified dynamics of approximate

orders 7/6 and 1/3, but as damage locations farther from the force application point

are considered, the higher order tends toward 1/2, while the lower one vanishes. This

trend is seen more clearly with order resolution 0.01. In the four cases discussed here,

the prominent orders are 1.12 and 0.28 (J = 3.7987), 0.90 and 0.29 (J = 6.3637),

0.62 only (J = 5.8139), and 0.56 only (J = 4.0329).

The presence of a measurable order shift reveals the potential utility of the forego-

ing identification procedure in system monitoring. The damage cases of Figure 4.10

are exactly alike, and they have only small effects on the magnitude of the response.

The only unique characteristic among them is the damage location, so it is promising
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that the identification procedure of this research is able to conclude that they have

distinct fractional orders. These results suggest that it is possible to locate damage,

a valuable feature in a monitoring tool for complex systems.

4.4.2 Coverage Formation

This subsection examines the effects of variations in the damage introduced into

the coverage formation system and the resulting set of system identification results.

These studies aid in understanding the manner in which the order shifts from 1/2

to 1/3 or 2/3 as the damage becomes greater, as well as what happens when it is

more severe than the heretofore assumed reduction by a factor of 10 in stiffness or

damping.

For consistency with the preceding discussions, the formation has eight layers of

robots and constants k = 2 and b = 1. Damage to the leftmost spring is considered

first. Figure 4.13 shows the effects of two moderate damages alongside the two refer-

ence curves from Chapter 3, specifically Figure 3.13. As is perhaps to be expected,

the curves for 50 and 25 percent stiffness generally fall between those of the original

case and that of 10 percent stiffness. However, the phase curves do not settle at one

phase over the medium-frequency band to the obvious extent that the others do.
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Recall that the identification result for the undamaged system over the window

of 10−0.8 to 101.6 rad/s is

F (s) =
562

s11/6 + 11s2/3 + 776s1/2 + 10

with error J = 0.3951. The case of 50 percent stiffness returns

F (s) =
1664

s2 + 0.5s11/6 + 524s2/3 + 1245s1/2 + 189

with error J = 0.2143. The case of 25 percent stiffness returns

F (s) =
2852

s13/6 + 1717s2/3 + 618s1/2 + 400

with error J = 0.4752. The case of 10 percent stiffness returns the result from the

last section:

F (s) =
3905

s13/6 + 2741s2/3 + 225

with error J = 1.3219. Taken together, these transfer functions resulting from the

identification procedure show the gradual shift in order from 1/2 to 2/3. The iden-

tification results are shown alongside the original curves over the frequency window

of interest in Figure 4.14.

Frequency responses with more severe damage to the spring are shown in Fig-

ure 4.15. The original and 10-percent cases are shown as well, for comparison. The

lower-frequency behavior changes drastically with the order of magnitude of the dam-

age; however, the phase difference resurfaces to roughly −60 degrees in each case.

These responses lend some support to the notion that the order shifts from 1/2 to

2/3 as a result of sufficiently severe damage.
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Figure 4.14. Identification results for somewhat reduced stiffness shown by
dashed lines and compared with full system results.
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For purposes of following the progression, it bears repeating that the undamaged

system has

F (s) =
562

s11/6 + 11s2/3 + 776s1/2 + 10

with error J = 0.3951, while the system with 10 percent stiffness in the leftmost

spring has

F (s) =
3905

s13/6 + 2741s2/3 + 225

with error J = 1.3219. Reducing the stiffness to 1 percent gives

F (s) =
25799

s13/6 + 4015s5/6 + 12409s2/3

with error J = 3.1295. Reducing it further, to 0.1 percent, gives

F (s) =
19564

s13/6 + 3180s5/6 + 9251s2/3

with error J = 3.6128. The last two of these are similar. The ratio of dominance for

order 2/3 in the case of 1 percent stiffness is 3.1 (12409/4015), while the same ratio

in the case of 0.1 percent stiffness is 2.9 (9251/3180). This means that, while the

trend of increasing order diminishes substantially, it does continue; the case of 0.1

percent stiffness exhibits more 5/6-order behavior than the other, though the overall

behavior still more strongly suggests order 2/3. The limiting case of k = 0 also has

its largest coefficient corresponding to order 2/3 and is nearly identical to the case of

0.1 percent stiffness. The identification results are shown in Figure 4.16; for visual

clarity, the case of k = 0 is omitted.
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dashed lines and compared with full system results.
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One may also consider a damage case that is opposite to the preceding ones, that

is, with k increasing instead of decreasing. Perhaps surprisingly, there is still an order

shift upward, though not all the way to 2/3; this is illustrated in Figure 4.17. The fre-

quency window is different from those in the other figures so that the high-frequency

trend may be shown. The nature of this result is explained by the magnitude plot;

there is less transmission of force through the system than in the original and weak-

ened (k reduced by a factor of 10) cases. In other words, this may be likened to a

different damage case in which all springs except the leftmost are reduced by a factor

of 10 or more. From that perspective, a result different in appearance from the others

is to be expected.

The undamaged system remains a worthwhile point of comparison; its identified
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transfer function is

F (s) =
562

s11/6 + 11s2/3 + 776s1/2 + 10

with error J = 0.3951. The case of k increased by a factor of 10 returns

F (s) =
2667

s13/6 + 1515s2/3 + 3616s1/2

with error J = 1.1187. The case of k increased by a factor of 100 returns

F (s) =
1149

s13/6 + 1067s2/3 + 1234s1/2

with error J = 0.8466. The case of k increased by a factor of 1000 returns

F (s) =
1051

s13/6 + 1031s2/3 + 1077s1/2 + 7

with error J = 0.8260. These are shown alongside the full system results in Fig-

ure 4.18. In the cases of 100 and 1000 times the original stiffness, the resulting

coefficients for orders 1/2 and 2/3 are close. The only interpretation permissible by

the given order resolution, sixths of orders, is that both orders are present in the sys-

tem. However, it is possible that the system has behavior suggestive of one specific

order between 1/2 and 2/3. Varying the optimization settings could confirm this.
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Figure 4.18. Identification results for increased stiffness shown by dashed
lines and compared with full system results.
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Following are the analogous cases for the leftmost damper. The effects of less

severe damage than by a factor of 10 are shown in Figure 4.19. In a sense, this mirrors

Figure 4.13, and that is consistent with intuition as it relates to order shifting. The

progression of transfer functions begins again with the undamaged system:

F (s) =
562

s11/6 + 11s2/3 + 776s1/2 + 10

with error J = 0.3951. In the case of 50 percent damping,

F (s) =
13694

s2 + 7s11/6 + 149s7/6 + 236s+ 13550s1/2 + 1516s1/3 + 1023

with error J = 0.2376. In the case of 25 percent damping,

F (s) =
60

s7/6 + 2s+ 19s1/2 + 41s1/3

with error J = 0.4159. In the case of 10 percent damping, the identified transfer

function is as previously given:

F (s) =
143

s4/3 + s7/6 + 130s1/3

with error J = 0.9120. Figure 4.20 shows these identification results and the com-

puted frequency responses over the window of interest. The order shift from 1/2 to

1/3 is evident by examining the coefficients.

Conversely, the frequency responses corresponding to more severe damage are dis-

played in Figure 4.21. It is previously demonstrated that each phase curve reflecting

greatly reduced stiffness tends toward the characteristic −60 degrees for medium-

high frequencies in Figure 4.15. Correspondingly, each phase curve reflecting greatly

reduced damping tends toward −30 degrees for medium-low frequencies.
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Figure 4.19. Effects of somewhat reduced damping labeled by percentage
retained in leftmost damper.
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Figure 4.20. Identification results for somewhat reduced damping shown by
dashed lines and compared with full system results.
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Figure 4.21. Effects of greatly reduced damping labeled by percentage
retained in leftmost damper.
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The identified transfer functions for the undamaged system,

F (s) =
562

s11/6 + 11s2/3 + 776s1/2 + 10

with error J = 0.3951, and that with 10 percent damping in the leftmost damper,

F (s) =
143

s4/3 + s7/6 + 130s1/3

with error J = 0.9120, are as before. The result for 1 percent damping is

F (s) =
7497

s13/6 + 2914s1/3 + 3800s1/6

with error J = 2.8539. The result for 0.1 percent damping is

F (s) =
8932

s13/6 + 2974s1/3 + 5070s1/6

with error J = 3.6457. The result for bd = 0 is similar in substance and is omitted. As

in the other damage examples, a progression is apparent. The fact that the two cases

of greatest damage yield 1/6-order, instead of 1/3-order, behavior is not consistent

with the stiffness example, which possesses order 2/3 in the limiting case. Admittedly,

these cases with increasing phase difference are challenging for the optimization in its

current configuration, by which it is constrained to prevent nonminimum phase in its

results for the sake of clear interpretation. This challenge is evident in the differences

between the original and identified frequency responses in Figure 4.22.
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Figure 4.22. Identification results for greatly reduced damping shown by
dashed lines and compared with full system results.
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Figure 4.23. Effects of increased damping in leftmost damper.

Increasing the damping in the leftmost damper yields the responses shown in

Figure 4.23. For purposes of visibility, the frequency window differs from those in

the other figures. The phase difference behavior is analogous to that shown in Fig-

ure 4.17. The magnitude curves are certainly more distinct from one another than

those resulting from increased stiffness, but there is no conceptual difference to be

noted; the magnitude and phase curves are inextricably linked, and the magnitudes

are simply following the trajectories they must as functions of frequency in order to

possess the appropriate slopes.

Naturally, this progression of transfer functions begins with that for the undam-

aged system:

F (s) =
562

s11/6 + 11s2/3 + 776s1/2 + 10
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with error J = 0.3951. Increasing the damping by a factor of 10 gives

F (s) =
1717

s2 + 3s11/6 + 2232s1/2 + 1376s1/3

with error J = 0.9501. Increasing it instead by a factor of 100 gives

F (s) =
447

s11/6 + 0.5s5/3 + 481s1/2 + 523s1/3

with error J = 0.7184. Increasing it instead by a factor of 1000 gives

F (s) =
553

s11/6 + s5/3 + 578s1/2 + 676s1/3

with error J = 0.6984. The last two cases are similar in coefficient ratio of orders 1/3

and 1/2, and those frequency responses follow each other closely in the comparison

plot, Figure 4.24. Within the chosen frequency window, there is little to distinguish

those two damage cases from each other. The value of this response as a monitoring

result, then, is to say that the new damping exceeds some threshold close to 100

times the original damping. The drop in magnitude distinguishes such a case from a

decrease in damping that might produce a similar phase difference curve.
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Figure 4.24. Identification results for increased damping shown by dashed
lines and compared with full system results.
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In the remainder of this section, to promote the idea that this identification proce-

dure can be used in conjunction with physical data collection, the frequency resolution

is cut roughly in half. The constants are still k = 2 and b = 1, but the frequency

window contains nf = 13 frequencies from 10−2 to 102 rad/s, a deliberately generic

choice. Figure 4.25, from [39], shows a comparison between the frequency responses

of a damaged system (k1 = kd = 0.1k) and its identified model. Orders correspond-

ing to other damage cases are discussed later in this section, but in this case, the

identified model is

F (s) =
5972

s13/6 + 833s5/6 + 3044s2/3 + 613

with error J = 0.9888.

Figure 4.26, from [39], is analogous for b1 = bd = 0.1b. The identified model is

F (s) =
175

s4/3 + s7/6 + 47s1/2 + 83s1/3 + 27

with error J = 1.2686. In both Figures 4.25 and 4.26, it is seen that the identified

transfer functions match well with the true transfer functions of the damaged systems.

Figures 4.27 and 4.28, both from [39], display the most comprehensive results.

The ratio of each denominator coefficient to the sum of those for all orders, called

the coefficient share, is shown for all cases examined in this study representing varied

stiffness from kd = 2 × 10−5 to 2 × 104 (Figure 4.27) and varied damping from

bd = 10−5 to 104 (Figure 4.28). The quantities kd/k and bd/b represent the severity

of damage. For each choice of kd/k or bd/b, the coefficient share across all orders has

a sum of 1.
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Figure 4.25. Low-density frequency responses for coverage formation with
damaged first spring.
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Figure 4.26. Low-density frequency responses for coverage formation with
damaged first damper.

109



0

104

0.2

103

0.4

100
10

0.6

C
oe

ffi
ci

en
t s

ha
re

1

k
d
 / k

0.8

0.1
0.01 13/6

1

211/610-3 5/3

Order

3/24/37/610-4 15/62/310-5 1/21/31/60

Figure 4.27. Identified orders for coverage formation with damaged spring.

110



0

104

0.2

103

0.4

100
10

0.6

C
oe

ffi
ci

en
t s

ha
re

1

b
d
 / b

0.8

0.1
0.01

1

13/62
10-3 11/65/3

Order

3/24/310-4 7/615/62/310-5 1/21/31/60

Figure 4.28. Identified orders for coverage formation with damaged damper.

111



The results of Figures 4.27 and 4.28 show that dynamical order follows a clear

trend with respect to the severity of damage that has occurred. In the case of the

damaged spring (Figure 4.27), the most severe damage case, i.e., the smallest value

of k1, suggests an order of 5/6. An order of 5/6 implies a magnitude slope of −16.7

dB/dec and phase difference of −75◦, so that result aligns well with expectation from

the analogous infinite systems with responses shown in Figure 3.19. For k1 = 0.1k,

the system is identified as 2/3-order; the undamaged system having k1 = k is seen

to possess order 1/2. These results are consistent with Figures 4.6 and 4.7 despite

different frequency window boundaries. In cases where k1 increases, the system is

best modeled with terms of orders 1/2 and 2/3. This is a reasonable result; increasing

stiffness is not the same as changing the degree of reduced stiffness, so the pattern

seen with reduced stiffness is not necessarily supposed to continue.

When damage is instead applied to the damper (Figure 4.28), the most severe

damage case, i.e., the smallest value of b1, suggests an order of 1/6 with some 1/3-

order behavior as well. The corresponding magnitude slope of −3.3 dB/dec and phase

difference of −15◦ make sense with respect to the infinite systems of Figure 3.20. For

b1 = 0.1b and b1 = b, the system is respectively 1/3-order and 1/2-order. The former

is consistent with Figure 4.8 despite the frequency window change; the latter is the

same system as k1 = k in Figure 4.27, so the bars are the same. When b1 increases,

the identified model features both 1/2-order and 1/3-order terms prominently. As in

the discussion of varying stiffness, those results are not expected to be part of the

order trend from the reduced damping cases.

It is clear that, from the undamaged system of order 1/2, reduced stiffness in

the leftmost spring drives the overall order toward 5/6, while reduced damping in

the leftmost damper drives it toward 1/6. From these results, it can be asserted

that a monitoring method that tracks the fractional order of some relationship of

interest within a complex system has potential utility in diagnosing the mechanical
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or operational change the system has experienced.

While the order trends clearly evolve in opposite directions for reduced stiffness

and damping, they do not quite evolve at the same rate. Severely reduced stiffness

implies that the system’s order clearly shifts to 5/6, but severely reduced damping

does not bring about order 1/6 to the same extent; a notable term of order 1/3 is

still present. This asymmetry is a topic of interest for future inquiries.

This study has only introduced stiffness and damping variations in the first layer

of the coverage formation. While the results presented here are not exhaustive, their

applicability is extended when the analogy to an infinite formation is recalled. In

that context, as mentioned previously, there is self-similarity; each node has a replica

of the overall formation attached to it. It can also be recalled from, e.g., Figure 3.10,

that as layers are added to the finite formation, the convergence of its behavior to that

suggested by the fractional-order model of the infinite formation occurs in five to ten

generations (for the foregoing parameter choices). Therefore, the findings presented

in this discussion can fit neatly into analysis of damage cases within the first layer or

any after roughly the fifth. This is because, in the latter case, it is possible to view the

damaged system as an arrangement of series and parallel combinations of subsystems,

i.e., replicas of the undamaged formation having order 1/2 (or of damaged formations

having other orders) connected by other components. With regard to layers two to

five, the same treatment is viable, though there may be no simplifying model for the

first few layers ahead of the damage location.

Each of the instances of varied damage produces the expected trend. The identifi-

cation procedure is able to capture this trend in computational terms, indicating the

relative dominance of each of the dynamical orders considered in the optimization.

However, the effects of different choices of those orders, though subtle, can influence

the interpretation suggested by the optimization results.
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4.5 Order Resolution Study

In the discussion of the damage case of increasing stiffness, it is hinted that the

conclusion that the coverage formation system has behavior reflecting two orders

roughly equally may not be the best description. Rather, after optimizing with

order steps of 1/6, the possibility remains that a different resolution may return one

prominent order, presumably between 1/2 and 2/3 in the case of increasing stiffness.

This section considers variation of the choices of order in the optimization and the

ensuing changes in the resulting transfer functions.

The preceding section shows results containing the orders 0, 1/6, . . . , 13/6. For

consistency, it is not feasible to preserve 13/6 as the upper bound; 13/6 is not an

integer multiple of any convenient order increment except 1/12, 1/18, and so on, for

a strained definition of “convenient.” To display a more reasonable set of resolutions,

then, the upper bound is set at 2.

These results pertain to the system with 100 times the original stiffness in the

leftmost spring. This scenario is introduced in the discussion containing Figure 4.17;

there are eight layers of robots, k = 2, b = 1, and the frequency window contains 25

frequencies evenly spaced on a logarithmic scale from 10−0.8 to 101.6 rad/s. When

the order resolution is 1/4, the identified transfer function is

F (s) =
902

s2 + 468s3/4 + 1342s1/2
,

and the error J = 1.1331. When the resolution is 1/6,

F (s) =
711

s2 + 636s2/3 + 787s1/2

114



with error J = 0.8844. When the resolution is 1/8,

F (s) =
662

s2 + 837s5/8 + 479s1/2 + 6

with error J = 0.8061. When the resolution is 1/10,

F (s) =
710

s2 + 363s7/10 + 478s3/5 + 399s1/2 + 180s2/5

with error J = 0.9505. When the resolution is 1/12,

F (s) =
618

s2 + 37s2/3 + 1181s7/12 + 19

with error J = 0.7489. When the resolution is 0.01,

F (s) =
617

s2 + 897s0.59 + 315s0.58 + 22

with error J = 0.7444. Some of these curves are shown in Figure 4.29. Resolutions

1/6, 1/8, and 1/12 are omitted from the figure for visual clarity; those three follow

the curve for resolution 0.01 almost perfectly. Resolutions 1/4 and 1/10 give slightly

less accurate results, and that additional error is sufficient to render those curves

visible in the plot.

The observations emerging from these results are diverse and, as such, indicative

of the inconclusiveness of a single choice of order resolution for this optimization

problem. There is only a loose error trend downward as the order is resolved more

finely; for example, resolutions 1/14 and 1/16 have more error than 1/12, though less

than 1/8. Furthermore, isolating the prevailing order does not necessarily become

easier as the number of orders in the computation increases. Here, orders 0.58 and

0.59 both appear prominent when the resolution is 0.01. It is reasonable to declare
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Figure 4.29. Identification results for one case of increased stiffness with
varied order resolution.

the true order to be 0.59, but the most dominant order in this set of trials is 7/12,

or 0.5833. Overall, though, every error is small enough to make the corresponding

magnitude curve nearly interchangeable with the full system’s frequency response.

This chapter has presented an identification method for fractional-order systems.

The results of the method indicate the real orders of dynamics that are most promi-

nent in a system’s frequency response. For the previously developed example of a

robot formation that can be subjected to damage, this chapter has demonstrated

that the identification procedure is able to compute transfer functions of fractional

order that match the results from the high-order model. These transfer functions

can be found both before and after the introduction of damage, and these compu-

tational results are in agreement with the expected order changes. As a monitoring
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tool for general mechanically modeled systems of high order, this procedure may be

a valuable source of information about the nature and extent of damage that may

have occurred.

117



CHAPTER 5

MODELING LARGE AND INFINITE MASS-SPRING-DAMPER NETWORKS

WITH FRACTIONAL AND IMPLICIT OPERATORS

Complex mechanical systems are susceptible to vibration because excitations can

spread easily among many interacting components. This behavior is commonly quan-

tified with numerical routines, but the complexity is an ostensible deterrent to math-

ematical analysis. This chapter presents a general and intuitive mathematical frame-

work to relate applied force and displacement in mechanical systems with models

called mechanical networks. Establishing these dynamics in a modular way pushes

toward the goal of efficient modeling of these systems, their components and subsys-

tems, and all combinations thereof. Much of this content appears in [40].

The systems examined in this chapter resemble those considered previously in this

dissertation. However, the preceding chapters are primarily concerned with numerical

results. This chapter is a more analytical thrust in pursuit of the operators that can

be used to describe these systems. The operators presented in this chapter are,

in general, implicit; the use of fractional differential operators as proxies for their

implicit counterparts is discussed as well.

The concept of mechanical networks is inspired by the well-established theory of

electrical networks and takes advantage of Ohm’s and Kirchhoff’s current laws by

analogy. Two common analogies similar to the one presented here are used to relate

current and voltage to force and velocity, where the difference between analogies

lies in which electrical quantity is connected to which mechanical one. However,

this research gives displacement a key role in the analogy instead of velocity. The
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modifications stemming from that decision are the preferred way to account for the

mechanical dynamics of interest.

The dynamics of these systems consist of inertia, damping, and elasticity, so

the systems can be modeled with masses, dampers, and springs, respectively. No

parallels are drawn to electrical circuits, so inerters are not needed; for a discussion

of inerters and equivalent circuits, see [66]. The motion resulting from a periodic

input suggestive of vibration is considered unidirectional and the springs and dampers

linear. In discussing models of systems with many components, it is assumed unless

otherwise noted that the stiffness and damping constants are uniform.

In the remainder of the chapter, the principles of this view of mechanical networks

are presented, followed by component-level equations that govern these networks on a

physical level. The utility of this approach is demonstrated on two types of example

systems: the ladder and the tree, both analogous to applications of interest. The

potential of this modeling framework in system design is outlined at the conclusion

of the chapter.

5.1 Mechanical Networks

This section connects the mechanical systems of interest in this chapter to the

language of networks. A network is comprised of nodes and the connections between

them, called branches. The concept of mechanical networks flows from the idea that

network branches can resemble mechanical components. Mechanical systems can be

translated into networks by taking mass to be located exclusively at the nodes, with

springs and dampers likewise in the branches. This treatment is perhaps gratuitous

for simple systems, but those with more degrees of freedom map to intricate networks

that may not resemble their mechanical geometry, thus revealing a new perspective

on their dynamics.

119



xn(t)◦ m
Y1

•
Y2

m
Y1

•
Y2

· · ·
Y1

m
Y1

•
Y2

m •
Y1

•
Y2

Figure 5.1. Form of two-component ladder network.

5.1.1 Finite and Infinite Networks

Real systems, obviously, are finite. Even a fine-mesh continuum analysis does not

contend that the system of interest is comprised of infinitely many elements. How-

ever, the idea of an infinite system is useful when thinking of mechanical systems as

networks. When the pattern of components used to model the system is repetitive, it

is often the case that the dynamics are similar with or without the last layer of com-

ponents. In other words, there is some sort of limit to which the dynamics converge

once there are sufficiently many layers of components in the model. Approximating

a complex system as an infinite version of itself can give rise to the desired math-

ematical simplicity in a governing equation while preserving the requisite accuracy.

More details about this can be found in [22] and [38].

This chapter considers two repeating patterns of components as examples of me-

chanical networks. A ladder is a linear arrangement of masses, as shown in Figure 5.1,

from [40]. Each mass is connected to three components: two in the forward direction

(right in the figure), with one connected to the next mass and the other grounded,

and one in the backward direction (left in the figure) that connects to the previous

mass. When the system is sufficiently large, the dynamics of the two dashed boxes are

approximately the same. The driving formation of Section 4.2 qualifies as a ladder.

A tree is a bifurcating arrangement, as illustrated in Figure 5.2. Each mass is

connected to three others: two in front (right in the figure) and one behind (left).

In both geometries, the first mass has no component behind it, while the last mass
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Figure 5.2. Form of two-component tree network.

(or, in the tree, each of the last masses) has two components going to ground in the

absence of a next mass to which to connect. The coverage formation of Section 3.1

is an example of a tree.

Both of these arrangements suggest analogies to physical applications. Both can

be considered plausible models for groups of simple vehicles traveling in a coordinated

manner, with the connecting components representing low-level control relationships

between each vehicle and its neighbors. The ladder suggests a long, flexible surface

possessing inertia, damping, and elasticity everywhere. The tree might represent

a similar surface with an amorphous shape; even with the structure defined, the

orientation is not assumed, and the masses need not all connect to one another in

the same direction.

Capturing the dynamics of these systems in a concise manner requires some math-

ematical tools not commonly seen in engineering. These methods and their utility to

this modeling framework are outlined next.
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5.1.2 Fractional and Implicit Operators

In determining differential equation models for systems, the amount of added

flexibility provided by fractional derivatives cannot be overstated. They are especially

useful in quantifying a relationship between two sides of a complex system, such as

the networks discussed in this chapter, when the intermediate dynamics must be

considered but need not be captured. Knowing the order representing the overall

dynamics has potential benefits in control as well as modeling. For the purposes of

this chapter, the choice of fractional derivative definition is not important.

It may be the case that a network is governed only by an implicit operator. This

is a generalization of the typical concept of operators. For example, in the equation

(
L2 + E1L− E0

)
f(t) = 0,

assuming that the function f(t) is arbitrary, the operator L is the solution of the

quadratic equation L2 + E1L− E0 = 0, with E0 and E1 representing any operators.

In the special case of E0 being the first derivative D and E1 the zero operator, L

is the derivative of order 1/2. Implicit operators are not necessarily intended to

reduce complexity but rather to provide a concise language of sorts with which to

describe the relationships of interest. All linear systems, in theory, can be described

by implicit operators.

5.2 Basic Equations

Branches and nodes are the building blocks of all networks, including the mechan-

ical networks presented here. This section relates the mathematical notions arising

from basic network structure to the physics of the systems of interest. It also places

admittance into context as an operator, one that appears throughout the remainder

of the chapter.
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Figure 5.3. Network branch consisting of a mechanical component of
admittance Y .

As previously mentioned, the springs and dampers in these networks are linear

and are found in the branches. Figure 5.3 is a schematic of a network branch with

an arbitrary component representing a spring-damper combination. The amount

of compression is ∆x(t) = xi(t) − xi−1(t), where xi and xi−1 are the respective

displacements of nodes i and i − 1 from their initial positions. The relationship

between compression and force, F (t), is

Y∆x = F ; (5.1)

they are linked by the admittance Y . An introductory example is a spring and a

damper in parallel, with stiffness and damping constants k and b, respectively. In

this case, Equation (5.1) becomes

(bD + k)∆x = F,

where D is the time derivative. The admittance is Y = bD + k. This is an example

of combining admittances for components in parallel; the equivalent admittance is

the sum of the individual admittances.

The branches are the connections between the nodes, where mass is located.

Newton’s law applied to the mass shown in Figure 5.4 gives the force balance

∑
j

Fj = m
d2x

dt2
= mD2x,
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m
F1
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Figure 5.4. Network node consisting of a mass m subject to forces F1, F2,
and F3.

wheremD2 is the inertia operator. The masses are treated as points, an interpretation

consistent with the aim of treating complex systems as networks with many nodes.

Continuous mass distributions would have to be discretized as in commonplace finite-

element methods.

5.3 Ladders

The ladder arrangement described in Section 5.1.1 is shown in Figure 5.1. The

components have arbitrary admittances Y1 and Y2. The relationship of interest is

that between the force applied on the left of the figure and the displacement x0. This

is of value in two ways: one can express an unknown vibration input or disturbance if

the displacement is measured or, alternatively, predict the displacement for a known

input in a simulation setting.

For each example, it is desirable to state the relationship between force and dis-

placement with differential operators only. Following from this choice, the dynamics

of the system are clear and can be calculated from any initial conditions. The dif-

ferential relationships presented here are reasonable starting points from which to

implement a simulation of the dynamics if either the force or the displacement is

prescribed.
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5.3.1 Finite Ladders

The ladder dynamics are presented here, first for smaller systems having few equa-

tions. The number of layers in each ladder is n. For each ladder, a relationship of

the form F = Yeqxn is sought, where Yeq is the ladder’s equivalent overall admit-

tance. Mechanical admittance for an individual component is considered to satisfy

Equation (5.1).

5.3.1.1 Base Cases

One-Layer Ladder: For n = 1, the ladder is shown in Figure 5.5, from [40]. A force

balance leads to the governing equation

mẍ1 = F − (Y1 + Y2)x1

for the one mass. Algebraic manipulation gives

mẍ1 + (Y1 + Y2)x1 =
(
mD2 + Y1 + Y2

)
x1 = F,

so the admittance is

Yeq =
F

x1

= mD2 + Y1 + Y2.

x1(t)◦ m •
Y1

•
Y2

Figure 5.5. One-layer ladder network.
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Two-Layer Ladder: For n = 2, the ladder is illustrated in Figure 5.6, from [40]. The

equations of motion are

mD2

x1

x2

 =

0

F

+

−2Y1 − Y2 Y1

Y1 −Y1 − Y2


x1

x2

 , (5.2)

where x1 is the displacement of the mass on the right and x2 that on the left. Starting

from the second line,

mD2x2 = F + Y1x1 − (Y1 + Y2)x2.

Equivalently,

mD2
(
mD2 + 2Y1 + Y2

)
x2 =

(
mD2 + 2Y1 + Y2

)
F +

(
mD2 + 2Y1 + Y2

)
Y1x1

−
(
mD2 + 2Y1 + Y2

)
(Y1 + Y2)x2.

From Equation (5.2), (mD2 + 2Y1 + Y2)x1 = Y1x2, and that substitution gives

mD2
(
mD2 + 2Y1 + Y2

)
x2 =

(
mD2 + 2Y1 + Y2

)
F + Y 2

1 x2

−
(
mD2 + 2Y1 + Y2

)
(Y1 + Y2)x2;

when rearranged, it becomes

((
mD2 + Y1 + Y2

) (
mD2 + 2Y1 + Y2

)
− Y 2

1

)
x2 =

(
mD2 + 2Y1 + Y2

)
F,

an equation describing the relationship only in terms of differential operators.
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x2(t)◦ m
Y1

•
Y2

m •
Y1

•
Y2

Figure 5.6. Two-layer ladder network.

Three-Layer Ladder: For n = 3, the ladder is depicted in Figure 5.7, from [40]. The

equations are

mD2


x1

x2

x3

 =


0

0

F

+


−2Y1 − Y2 Y1 0

Y1 −2Y1 − Y2 Y1

0 Y1 −Y1 − Y2



x1

x2

x3

 . (5.3)

One can apply (mD2 + 2Y1 + Y2) to the second line of Equation (5.3), at which point

one may substitute the first line: (mD2 + 2Y1 + Y2)x1 = Y1x2. It follows that

((
mD2 + 2Y1 + Y2

)2 − Y 2
1

)
x2 =

(
mD2 + 2Y1 + Y2

)
Y1x3. (5.4)

Applying
(

(mD2 + 2Y1 + Y2)
2 − Y 2

1

)
to the third line of Equation (5.3) enables the

substitution given in Equation (5.4), so the relationship is

[ (
mD2 + Y1 + Y2

) ((
mD2 + 2Y1 + Y2

)2 − Y 2
1

)
−
(
mD2 + 2Y1 + Y2

)
Y 2

1

]
x3

=
((
mD2 + 2Y1 + Y2

)2 − Y 2
1

)
F.

n-Layer Ladder: The equations presented for one, two, and three layers can be

generalized to n layers. The matrix equation of motion for a ladder system with n
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x3(t)◦ m
Y1

•
Y2

m
Y1

•
Y2

m •
Y1

•
Y2

Figure 5.7. Three-layer ladder network.

layers is

mD2



x1

x2

...

...

xn


=



0

...

...

0

F


+



−2Y1 − Y2 Y1 0 · · · 0

Y1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . −2Y1 − Y2 Y1

0 · · · 0 Y1 −Y1 − Y2





x1

x2

...

...

xn


. (5.5)

The differential relationship between xn and F can be derived as for the smaller

ladders.

5.3.1.2 Extension to Large Ladders

Even with as few as three layers, the exact governing equation is somewhat cum-

bersome. Self-similarity can be exploited in writing the differential relationship for

an arbitrarily large number of masses n in a much more concise form than would be

determined from Equation (5.5). If the leftmost Y1 has twice the admittance of the

others (Y1,n = 2Y1), that relationship has the form

Enxn = En−1F ; (5.6)

Ei =
(
mD2 + 2Y1 + Y2

)
Ei−1 − Y 2

1 Ei−2, (5.7)
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where E0 = I and E−1 = 0 for purposes of recursion. The operators Ei are differen-

tial operators; they are computed by Equation (5.7) and govern the ladder network

according to Equation (5.6). The admittance Yeq is sought such that Yeqxn = F . The

introduction of self-similarity is manifested in the approximation En−1xn ≈ En−2F ;

in other words, the displacement xn(t) corresponds to the force F (t) whether there

are n or n−1 layers because the system is large. Starting with a substitution for En,

(
mD2 + 2Y1 + Y2

)
En−1xn︸ ︷︷ ︸
≈En−2F

−Y 2
1 En−2xn = En−1F = En−1Yeqxn︸ ︷︷ ︸

≈YeqEn−2F

.

By definition, Yeqxn can be substituted for F to yield

(
mD2 + 2Y1 + Y2

)
En−2Yeqxn − Y 2

1 En−2xn = Y 2
eqEn−2xn;

rearranging gives

(
Y 2

eq −
(
mD2 + 2Y1 + Y2

)
Yeq + Y 2

1

)
En−2xn = 0.

The displacement xn is arbitrary, and the operator En−2 cannot be the zero operator

if n > 1. Therefore, it is valid to express Yeq as the solution of a quadratic equation:

Yeq =
1

2

(
mD2 + 2Y1 + Y2 ±

((
mD2 + 2Y1 + Y2

)2 − 4Y 2
1

)1/2
)
. (5.8)

Admittances Y1 = k and Y2 = bD would create a spring-damper ladder. For

neatness, suppose the leftmost Y1, called Y1,n, has twice the stiffness of the others.

Therefore, Y1,n = 2k, and the equivalent admittance is

Yeq =
1

2

(
mD2 + bD + 2k ±

((
mD2 + bD + 2k

)2 − 4k2
)1/2

)
.
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If the leftmost Y1 is the same as the others, that is, Y1,n = k, then Equation (5.8)

still holds for the first n− 1 layers, counting from the right. The last is included by

combining admittances in series:

1

Yeq

=
1

mD2 + bD + k
+

2

mD2 + bD + 2k ±
(
(mD2 + bD + 2k)2 − 4k2

)1/2
.

Numerical evaluations of ladder dynamics enforce the notion of self-similarity.

That is, the ladder can become large enough that additional layers make little differ-

ence in a time-domain response. This result shows that the dynamics to which the

ladder arrangement converges are captured by an implicit operator. Furthermore,

the frequency response shows that fractional-order behavior such as the operator

raised to the power 1/2 in Equation (5.8) must be included for a concise, accurate

differential equation relationship.

5.3.2 Infinite Ladders

Implicitly defined dynamics are also evident by considering the network system

as infinite from the start. Specifically, the approximation of the system as an infinite

version of itself allows for analogous neighboring positional relationships to be con-

sidered equal. The results of this section, combined with the previous section, show

that the overall dynamics and those at the component level are connected when the

ladder is taken to be infinite.

The equation of motion for mass i is

mD2xi = −Y2xi + Y1(xi+1 − xi)− Y1(xi − xi−1).

The neighbors’ displacements are related according to

Y1xi+1 = Yeqxi; (5.9)
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that is, for a large ladder, the force propagating to the right through a node (F =

Yeqxi) is equal to that coming in from the left. Defining a displacement ratio, a

transfer function of sorts, called G and substituting G = xi+1/xi ≈ xi/xi−1 yields

mD2xi =
(
−Y2 + Y1(G− I)− Y1

(
I −G−1

))
xi;

it follows that (
Y1G

2 −
(
mD2 + 2Y1 + Y2

)
G+ Y1

)
xi = 0.

The formal solution is

G =
1

2Y1

(
mD2 + 2Y1 + Y2 ±

((
mD2 + 2Y1 + Y2

)2 − 4Y 2
1

)1/2
)
.

From Equation (5.9), it can be inferred that G = Yeq/Y1; that substitution gives

an expression for Yeq that is consistent with Equation (5.8). The “plus” solution

is the relevant one because its frequency response has nonpositive phase difference,

indicating the intended property of causality. Furthermore, it matches the finite

systems’ frequency responses at least partially with mass neglected, as shown in

Figure 5.8, from [40] (“large approx”). The “minus” solution is reflected about zero

on both y-axes from the “plus” solution and is not shown.

The approximation of the system as infinite is valuable in light of the frequency

responses of the corresponding finite arrangements of these components. The implicit

operator that appears to be governing the system suggests fractional-order behavior of

the type seen over a wide band of frequencies, as depicted in Figure 5.8. The dominant

slope in magnitude of −10 dB/dec and phase difference of −45◦ are suggestive of

order 1/2; this is consistent with the result from a similar system in Figure 4.3. In

Figure 5.8, that behavior is progressively more evident as more layers are added to

the ladder. Therefore, it is accurate to model a system with sufficiently many layers
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Figure 5.8. Large ladder approximation and elongation of frequency band
suggesting fractional-order behavior for finite ladders.

as fractional.

Figure 5.9, from [40], is a high-frequency comparison between the simulated re-

sponse of a ladder with 1000 layers and the solution of the governing equation for a

fractional-order system having the same input, except that it is attenuated in mag-

nitude, as suggested by comparing the two frequency responses. The fractional-order

model is not exactly the large approximation of Equation (5.8); that model’s implicit

operator cannot be applied directly. Rather, Figure 5.8 shows a phase difference

slightly less than −90◦ for high frequencies, with magnitude slope to match, and

therefore suggests that the model has order slightly less than 1. The order chosen in

the computations of Figure 5.9 is 0.85.
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Figure 5.9. Time-domain excitation at frequency 20π rad/s showing
agreement between ladder and approximation.
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Figure 5.10. Time-domain excitation at frequency π/2 rad/s showing
mismatch between ladder and approximation.

At low frequencies, however, it may not be accurate to model the system with the

large approximation. As shown in Figure 5.8, the frequency response of 1/Yeq for the

infinite system deviates substantially from those of the finite systems for frequencies

below roughly 1 rad/s. Figure 5.10, from [40], confirms that the large approximation

breaks down for low frequencies. At π/2 rad/s, the magnitude slope and phase

difference of the large approximation suggest an order of roughly 0.5. However, a

better match is seen from an equation of order 0.65 (“adjusted approx”), more in line

with the 1000-layer ladder system’s frequency response curves in Figure 5.8. In both

cases, the force magnitude is attenuated in the same manner as in the high-frequency

case to yield an informative comparison.

In Figure 5.8, the peaks of the phase curves become gradually less negative for
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longer systems. However, considering how slowly that trend evolves despite being on

a logarithmic scale, it appears that a physically unrealistic number of layers would be

needed to see convergence to the large approximation for low frequencies. There is a

clear match for high frequencies, though, so the large approximation is appropriate

in that case.

5.4 Trees

The tree arrangement is illustrated in Figure 5.2. As with the ladder, the re-

lationship of interest is between the force applied at left and the displacement x0.

The right components are attached to ground. The component admittances are Y1

and Y2. The special case of no mass is considered later in the discussion, but at the

outset, the masses m are included.

As with the ladder examples, each relationship between force and displacement is

written with differential operators only. This mitigates any possible concerns about

initial conditions or, put another way, unknown constants of integration. If either

the force or the displacement is a known function of time, the other can be computed

easily.

5.4.1 Finite Trees

This discussion seeks to determine each tree’s equivalent admittance Yeq. Me-

chanical admittance is considered to satisfy Equation (5.1). The number of layers in

each tree is n.
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5.4.1.1 Base Cases

One-Layer Tree: For n = 1, the tree and ladder are the same (Figure 5.5). A force

balance leads to the governing equation

mẍ11 = F − (Y1 + Y2)x11

for the one mass. The subscript is changed to 11 for ease of expansion to larger trees.

Algebraic manipulation gives

mẍ11 + (Y1 + Y2)x11 =
(
mD2 + Y1 + Y2

)
x11 = F.

Two-Layer Tree: For n = 2, the tree is shown in Figure 5.11. The equations of

motion are

mD2


x11

x12

x21

 =


0

0

F

+


−2Y1 − Y2 0 Y1

0 −Y1 − 2Y2 Y2

Y1 Y2 −Y1 − Y2



x11

x12

x21

 .

In an analogous fashion to the case of the ladder, a purely differential relationship

between x21 and F can be determined. Starting from the third line,

mD2x21 = F + Y1x11 + Y2x12 − (Y1 + Y2)x21;

(
mD2 + 2Y1 + Y2

) (
mD2 + Y1 + 2Y2

) (
mD2x21 = F + Y1x11 + Y2x12

−(Y1 + Y2)x21) .
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Figure 5.11. Two-layer tree network.

From the substitutions (mD2 + 2Y1 + Y2)x11 = Y1x21 and (mD2 + Y1 + 2Y2)x12 =

Y2x21,

(
mD2 + 2Y1 + Y2)

(
mD2 + Y1 + 2Y2

)
mD2x21

=
(
mD2 + 2Y1 + Y2

) (
mD2 + Y1 + 2Y2

)
F +

(
mD2 + Y1 + 2Y2

)
Y 2

1 x21

+
(
mD2 + 2Y1 + Y2

)
Y 2

2 x21

−
(
mD2 + 2Y1 + Y2

) (
mD2 + Y1 + 2Y2

)
(Y1 + Y2)x21;

rearranging gives

((
mD2 + 2Y1 + Y2)

(
mD2 + Y1 + 2Y2

) (
mD2 + Y1 + Y2

)
−
(
mD2 + Y1 + 2Y2

)
Y 2

1 −
(
mD2 + 2Y1 + Y2

)
Y 2

2

)
x21

=
(
mD2 + 2Y1 + Y2

) (
mD2 + Y1 + 2Y2

)
F.
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Three-Layer Tree: For n = 3, the tree is illustrated in Figure 5.12. The equations

are

mD2x = F +



Ya = −2Y1 − Y2 0 0 0 Y1 0 0

0 Yb = −Y1 − 2Y2 0 0 Y2 0 0

0 0 Ya 0 0 Y1 0

0 0 0 Yb 0 Y2 0

Y1 Y2 0 0 Ya 0 Y1

0 0 Y1 Y2 0 Yb Y2

0 0 0 0 Y1 Y2 −Y1 − Y2



x,

where

x =

[
x11 x12 x13 x14 x21 x22 x31

]T

and

F =

[
0 0 0 0 0 0 F

]T

are abbreviated for reasons of space. Regarding the differential relationship, the

details are omitted, but the procedure is the same as in the n = 2 case.
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Figure 5.12. Three-layer tree network.

n-Layer Tree: The matrix governing equation for one, two, or three layers can be

expanded for a tree of n layers:

mD2x =



0

...

0

F


+





Ya 0

0 Yb

 0 · · · 0

0
. . . . . .

...

...
. . .

Ya 0

0 Yb

 0

0 · · · 0 −Y1 − Y2



+



0

Y1

Y2

 0 · · · 0

. . . . . .
...[

Y1 Y2

]
. . . . . . 0

0

...

. . .

. . . . . .

Y1

Y2


0 · · · 0

[
Y1 Y2

]
0





x, (5.10)
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where

x =

[
x11 x12 · · · x1,2n−1 x21 x22 · · · x2,2n−2 · · · xn1

]T

.

To clarify, the blocks containing Y1 and Y2 step to the left by one column sequentially

in the upper triangle, and the matrix is symmetric. The blank space, aside from the

progressions of blocks, contains only zeros. The matrix is decomposed for neatness,

but it is also valid to consider the first matrix as the influence of each mass on its own

position, while the second contains all contributions from neighbors. A differential

equation relating F and xn1 can be determined by substituting rows into one another

as with the ladder.

5.4.1.2 Extension to Large Trees

The exact governing equation for the tree can only be written neatly from the form

of Equation (5.10) for one or two layers. As in the case of the ladder, substitutions

informed by self-similarity may be made in the differential equation relationship for

a large number of layers n. That relationship is

Lnxn1 = RnF, (5.11)

where

Li = L1(Li−1 + Y1Ri−1)(Li−1 + Y2Ri−1)

− (Li−1 + Y2Ri−1)Ri−1Y
2

1 − (Li−1 + Y1Ri−1)Ri−1Y
2

2

and

Ri = (Li−1 + Y1Ri−1)(Li−1 + Y2Ri−1).

The recursion begins with L1 = mD2 +Y1 +Y2 and R1 = I. Therefore, Li and Ri are

differential operators, and they govern the tree network according to Equation (5.11).
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After substituting the expressions for Li and Ri, the equation simplifies to

[
mD2

(
L2
n−1 + (Y1 + Y2)Rn−1Ln−1 + Y1Y2R

2
n−1

)
+ (Y1 + Y2)L2

n−1

+ 2Y1Y2Rn−1Ln−1

]
xn1 = (Ln−1 + Y1Rn−1)(Ln−1 + Y2Rn−1)F. (5.12)

An expression for the admittance Yeq is desired such that Yeqxn1 = F . Self-similarity

gives rise to the approximation Ln−1xn1 ≈ Rn−1F , prescribing the system to have

the same relationship between xn1 and F whether it has n or n − 1 layers. The

admittance is determined as follows: expanding Equation (5.12) on both sides gives

mD2
(
L2
n−1 + (Y1 + Y2)Rn−1Ln−1 + Y1Y2R

2
n−1

)
xn1 + (Y1 + Y2)L2

n−1xn1

+2Y1Y2Rn−1Ln−1xn1 = (Ln−1 + Y1Rn−1)(Ln−1 + Y2Rn−1)F

= L2
n−1F + (Y1 + Y2)Rn−1Ln−1F + Y1Y2R

2
n−1F.

Applying Ln−1xn1 ≈ Rn−1F followed by F = Yeqxn1 three times each yields an

equation that can be rearranged to give

(
Y 3

eq −mD2(Yeq + Y1)(Yeq + Y2)− Y1Y2Yeq

)
R2
n−1xn1 = 0.

The displacement xn1 is arbitrary, and the operator Rn−1 cannot be the zero operator.

Therefore, Yeq is a root of the cubic expression given. There is only one real root; it

is

Yeq =
1

3
mD2 +

3
√

2Yc

3
(
Yd + (−4Y 3

c + Y 2
d )

1/2
)1/3

+
1

3 3
√

2

(
Yd +

(
−4Y 3

c + Y 2
d

)1/2
)1/3

,

where Yc = m2D4 + 3mD2(Y1 + Y2) + 3Y1Y2 and Yd = 2m3D6 + 9m2D4(Y1 + Y2) +

36mD2Y1Y2. Admittedly, an operator of this complexity is likely beyond the desired

scope of most simulations in the absence of useful approximations.
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Figure 5.13. Massless three-layer tree network.

One such approximation is considering the mass to be negligible, as one may do

for a system dominated by damping and elasticity. This version of the tree is drawn

in Figure 5.13. This yields Y 2
eq − Y1Y2 = 0, assuming that Yeq 6= 0. In turn,

Yeq = ±(Y1Y2)1/2. (5.13)

Presumably the positive solution is of exclusive interest, considering that the neg-

ative solution is not physically realizable with springs and dampers having positive

constants.

As with the ladder, numerical evaluations of tree dynamics suggest self-similarity.

This result shows that the dynamics to which the tree arrangement converges are of

an order that is a multiple of 1/2 (1/2 exactly for the previous choices of Y1 = k and

Y2 = bD). The frequency responses for large trees clearly suggest order 1/2 as well.
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5.4.2 Infinite Trees

As in the case of the ladder, the system can be analyzed as infinite to yield concise

relationships capturing the behavior of interest. One may begin by considering the

node equations, but progress is expedited by considering series and parallel combina-

tions to produce the 1/2-order conclusion rather quickly. Above all, this demonstrates

that the modeling framework outlined here does not necessarily prescribe one way

to examine a system; rather, the results will be consistent for all approaches, though

ease of computation may vary.

The following developments are based on the branch equation,

Yi∆xi = Fi,

and the node equation, ∑
j

Fj = 0.

In the notation to follow, the first index refers to the network layer (counting from

right to left in Figure 5.13), and the second refers to the branch (counting from top

to bottom).

For n = 1, the three equations for the one node are

F11 = bD(0− x11);

F12 = k(0− x11);

F11 + F12 = −Feq.

These can be combined, resulting in

bD(0− x11) + k(0− x11) = −Feq,
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so in the definition

Y1,eqx11 = Feq,

the equivalent admittance is

Y1,eq = bD + k.

This approach takes m = 0 in order to portray dynamics dominated by stiffness and

damping, so the term mD2 does not appear. In this example, Yeq can be applied to

a known xn1 to compute the unique solution Feq.

For n = 2, there are three nodes with three equations each:

F21 = bD(x11 − x21);

F22 = k(x12 − x21);

F21 + F22 = −Feq;

F11 = bD(0− x11);

F12 = k(0− x11);

F11 + F12 = −F21;

F13 = bD(0− x12);

F14 = k(0− x12);

F13 + F14 = −F22.

After solving the above as a linear system, it is seen that the solution is

Feq = (bD + k)

(
b

k
D +

k

b
D−1

)
x21 = Y2,eqx21. (5.14)

It should be noted that this equivalent admittance contains an integral operator, so

Equation (5.14) is not strictly a differential equation. Even with only two layers in

the tree, the exact modeling approach introduces undesired complexity.
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For n→∞, the equations for series and parallel combinations imply that

Y∞,eq =
Y1Y∞,eq

Y1 + Y∞,eq

+
Y2Y∞,eq

Y2 + Y∞,eq

.

It is possible to start here because it is clear that the subtrees attached to the first Y1

and Y2 are exact copies of the large tree. Disregarding the possibility that Y∞,eq = 0,

the solution is

Yeq = (Y1Y2)1/2 ,

which for Y1 = bD and Y2 = k gives

Yeq = (kbD)1/2.

This is consistent with the analysis of the finite tree that culminated in Equa-

tion (5.13). The tree system as described is clearly of order 1/2. In keeping with

the discussion of Figure 3.4, it is no surprise that finite instances of the tree exhibit

1/2-order behavior over a window of frequencies that becomes wider as more layers

of components are added to the system. These results are compared to the large ap-

proximation in Figure 5.14, with larger trees’ 1/Yeq curves having a magnitude slope

of −10 dB/dec and a phase difference of −45◦ at progressively more frequencies.
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Figure 5.15 compares the response of a five-layer tree to a sinusoidal input with

the solution of the governing equation for a purely 1/2-order system having the same

input. A higher-frequency input creates a mismatch between the tree system and

the same 1/2-order approximation, as shown in Figure 5.16. The magnitude slope

and phase difference shown in the frequency response of Figure 5.14 suggest that

the order approaches 1 for high frequencies. A better match, computed with order

8/9, is shown in Figure 5.16 as “shifted-order approx.” In this approximation, the

input force magnitude is amplified to correspond to the full system at the input

frequency, as suggested by Figure 5.14. Such a step is not needed in the 1/2-order

approximation, for which the magnitudes agree at the lower input frequency.
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As shown in Figures 5.15 and 5.16, the tree systems introduce transient behavior

that is not captured well by the approximations. However, considering that vibration

analysis is typically concerned with steady-state dynamics, these approximations are

still accurate in the sense that the vibration amplitudes and phases are consistent

with those of the system simulations. This method of approximation is therefore

promising for simplifying models of complex mechanical systems.

This chapter has presented a descriptive framework for mechanical networks. It

is intended primarily to enhance understanding of these systems, which are repre-

sentative of a wide range of complex mechanical systems in applications of interest.

The research presented in this chapter is an extension of Chapters 3 and 4 to systems

with arbitrary linear connections; it is a pursuit of as yet unexplored analytical tools

for the purpose of modeling such systems. These tools open possibilities for related

but distinct endeavors, including quantifying the effects of component constants that

are varied, perhaps in a random distribution. The reverse problem of constructing

systems of arbitrary order from known components is also of interest.

Naturally, the potential exists to explore other network arrangements that may

correspond to still more systems. The intention of this chapter is to assert that such a

procedure can be informative in general. It is possible that simulations containing the

systems of interest can be made more computationally efficient, in development time

as well as runtime, when a physically exact model is replaced with a more concise

relationship while preserving sufficient accuracy.

The systems studied in this research are characterized by interconnected dynamics

that complicate attempts to model all of the influential behavior exactly. This frame-

work contributes concise and accurate descriptions of such dynamics. Relationships

of interest can be captured without having to preserve a large state space of other

quantities. Models of the nature produced by this framework, generally of fractional

order, give a clear picture of the dynamical nature of the important behavior; this
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can be a valuable asset when designing a control strategy. Overall, these findings

are presented with the aim of filling the theoretical foundation to exist alongside the

numerical one for analysis of complex mechanical systems.
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CHAPTER 6

FRACTIONAL-ORDER TRAJECTORY-FOLLOWING CONTROL FOR

TWO-LEGGED DYNAMIC WALKING

The preceding chapters demonstrate that fractional order is a parameter that

can be used to track dynamical changes within a system. One effort that can be

aided by knowledge of these dynamical changes is control. Relating fractional-order

dynamics to a suitable corresponding fractional-order controller is documented in

studies such as [75]. This chapter presents an example of the utility of fractional

order in control for a system that is not suspected to have fractional-order behavior,

in turn reinforcing the notion that integer-order systems can be treated as special

cases within the class of fractional-order systems.

Two-legged dynamic walking is arguably the most useful kind of walking. Static

walkers are focused on balance and require constant control effort to execute move-

ments, resisting inertia and gravity, so their application space is limited. In contrast,

dynamic walkers take advantage of inertia and gravity, so their movements are more

energetically efficient. They also allow for more freedom of movement at the ex-

pense of instantaneous balance, and this expands the variety of terrain that can be

traversed. Walkers with more than two legs can be similarly versatile, but space

considerations favor two legs.

This chapter presents a new path toward improvement in performance and energy

efficiency for a two-legged dynamic walker. The equations of motion for such a

walker suggest that feedback linearization is desirable for the purpose of implementing

classical control methods. The contribution of this research is to show that fractional-
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order control has possible benefits over proportional-derivative (PD) control in a

robot’s trajectory-following ability and energy consumption.

The premise of fractional-order control is to alter the order of a linear controller,

not merely its gains. Rather than controlling from an error quantity and its first

derivative, one may instead use a derivative having a different order q that is not

necessarily an integer. Thus, the concept of fractional-order control is guaranteed to

do at least as well as PD control; q = 1 restores it. Less intuitive is the potential

of other controller orders. This chapter demonstrates the merits of changing the

order and suggests that fractional-order control is a straightforward way to improve

a two-legged dynamic walker’s response relative to that resulting from PD control.

6.1 Walker Dynamics

This section presents the dynamics of the two-link walker model of interest in this

research. A schematic of the walker is shown in Figure 6.1.

The angles are defined as follows. The angle of the swing leg relative to the

stance leg is called θ1. The angle of the stance leg relative to the vertical is called

θ2. For practical purposes, neither angle should have a value outside of the interval

[−π/2, π/2] rad.
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Figure 6.1. Walker with angle definitions.
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The equations of motion for the two-legged walker take the form

D(θ)

θ̈1

θ̈2

+ C(θ, θ̇)

θ̇1

θ̇2

+G(θ) = B(θ)u(t), (6.1)

where D, C, G, and B are the inertia, velocity, gravity, and control matrices respec-

tively. A system of first-order differential equations equivalent to Equation (6.1) can

be written:

ẋ =



x3

x4

D−1

−C
x3

x4

−G+Bu(t)


2x1


, (6.2)

where x1 = θ1, x2 = θ2, x3 = θ̇1, and x4 = θ̇2. The physical parameters influencing

D, C, and G are l, the leg length (1 m for this walker); lc, the position of the leg’s

center of mass measured from the base of the leg (0.8 m); m, the leg mass (0.3 kg);

and J , the leg’s moment of inertia about its center of mass (0.03 kg m2). These

parameters originate from previous research in the author’s department on the same

simulated walker. Also referenced is g, the acceleration due to gravity.

The inertia matrix D is given by

D11 = J +m(l − lc)2;

D12 = −J −m(l − lc) (l − lc − l cos(θ1)) ;

D21 = D12;

D22 = 2J +ml2c +m
(
l2 + (l − lc)2 − 2l(l − lc) cos(θ1)

)
.
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The velocity matrix C is given by

C =

 0 −ml(l − lc) sin(θ1)θ̇2

−ml(l − lc) sin(θ1)(θ̇1 − θ̇2) ml(l − lc) sin(θ1)θ̇1

 .
The gravity matrix G is given by

G =

 mg(l − lc) sin(θ1 − θ2)

−mg (l sin(θ2) + lc sin(θ2) + (l − lc) sin(θ1 − θ2))

 .
The control matrix B is simply

B =

1

0


because the torque input u(t) only drives the swing leg, changing its angular velocity.

The specifics of the error metric h are discussed further in the next section, but for

now it is important to note that it depends only on θ1 and θ2. For control purposes,

it is desirable to compute the time derivative of h:

dh

dt
=
∂h

∂x

dx

dt

=

[
∂h
∂x1

∂h
∂x2

0 0

]
dx

dt

=
∂h

∂x1

x3 +
∂h

∂x2

x4.

In contrast with higher derivatives of h, this does not depend on the input u(t).

Therefore, the first derivative of h can be used in a straightforward way in computing

u(t) as the walker progresses through time.
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6.2 Angle-Following Algorithm

Leg angles are compared to the desired trajectory. During a step, the swing leg

angle relative to the stance leg, θ1, should follow a specific function of the stance leg

angle from vertical, θ2. That function, z(θ2(t)), is a Bézier polynomial chosen for

dynamic stability. Trajectory-following error is given by

h(x) = x1 − z(x2) = θ1 − z(θ2). (6.3)

The desired trajectory prescribed by the Bézier polynomial is illustrated in Figure 6.2.

The error function of Equation (6.3) enforces the desired trajectory by giving large

negative penalties when the stance leg angle θ2 deviates too much from zero. In

those situations, a corresponding θ1 of larger than 1 rad, as plotted in Figure 6.2, is

unattainable in practice during an attempt to continue walking, so the error h(t) is

certain to be large and negative.

In this case, z(θ2) is a fourth-order polynomial:

z(θ2) = z0 + z1θ2 + z2θ
2
2 + z3θ

3
2 + z4θ

4
2.

For the examples of this chapter, the coefficients are

z0, . . . , z4 =

[
0.469 3.06 −17.9 −21.0 170.

]
.

These coefficients come from a set of five parameters chosen in previous research to

establish a desired walking speed of 0.17 m/s. A detailed discussion on choosing the

coefficients can be found in [71].
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Figure 6.2. Desired correspondence between leg angles.
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Given the state-space model of Equation (6.2), decomposed as

ẋ = f(x) + g(x)u(t),

an exponentially attractive periodic orbit can be achieved with the feedback lineariza-

tion step

u(t) = (LgLfh(x))−1 (v(t)− L2
fh(x)

)
.

Here, the Lie derivatives Lf and Lg are equivalent to directional derivatives such that

Lfh(x) =
∂h

∂x
(x)f(x),

L2
fh(x) =

∂

∂x
(Lfh(x)) f(x),

and so on. Along the lines of the discussion in [71], it follows that

d2h

dt2
(t) = v(t), (6.4)

implying that an appropriate choice of v(t) leads to stability.

The chosen algorithm is linear feedback. For any positive real numbers KD and

KP , the solutions of the second-order differential equation

d2h

dt2
(t) +KD

dh

dt
(t) +KPh(t) = 0

drive h(t) to zero. Therefore, keeping in mind Equation (6.4), the control signal

v(t) = −
(
KD

dh

dt
(t) +KPh(t)

)
(6.5)

does the same. In this algorithm, the proportional-derivative control of Equation (6.5)
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is generalized to

v(t) = −
(
KD

dqh

dtq
(t) +KPh(t)

)
. (6.6)

Compared to the shorthand PD, this type of control may be abbreviated PDq. The

execution of this control strategy based on a fractional derivative is discussed in the

next section.

6.3 Fractional Derivative Control

Fractional derivatives are approximated in order to implement Equation (6.6). In

the Laplace domain, the Padé approximant

sq ≈ b0 + b1s+ · · ·+ bns
n

a0 + a1s+ · · ·+ ansn

is substituted for the fractional derivative of order q. Considering that powers of

s correspond to derivatives, the Padé approximant is a way to improve accuracy

relative to a Taylor series expansion of order n without needing to compute higher-

order derivatives. An example of a first-order approximation is

s0.95 ≈ 1 + 39s

39 + s
.

A comparison of this power of s and its approximation is given in Figure 6.3.

159



10-2 10-1 100 101 102

s

10-2

10-1

100

101

102

s0.
95

 o
r 

ap
pr

ox
im

at
io

n

s0.95

approx
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The control and dynamics are computed together. The PD control equation,

Equation (6.6), becomes

V (s) = −
(
KD

b0 + b1s+ · · ·+ bns
n

a0 + a1s+ · · ·+ ansn
H(s) +KPH(s)

)
.

After some manipulation,

(a0 + a1s+ · · ·+ ans
n)V (s) =

− [KD(b0 + · · ·+ bns
n) + KP (a0 + · · ·+ ans

n)]H(s).

In the time domain, this is a differential equation of order n to be solved for v(t).

The error h(t) and its first derivative are known at each computation step; higher-

order derivatives of h(t) are not. However, recalling Equation (6.4), the substitution

s2H(s) = V (s) can be made as needed:

[(a0 +KDb2 +KPa2) + (a1 +KDb3 +KPa3)s+ · · ·

+ (an−2 +KDbn +KPan)sn−2 + an−1s
n−1 + ans

n
]
V (s)

= − [KD(b0 + b1s) +KP (a0 + a1s)]H(s).

It follows that fractional derivative control is implemented by computing v(t) from

h(t) and its first derivative. The time-domain differential equation is

anv
(n)(t) + an−1v

(n−1)(t)

+ (an−2 +KDbn +KPan)v(n−2)(t)

+ · · ·+ (a1 +KDb3 +KPa3)v̇(t)

+ (a0 +KDb2 +KPa2)v(t)

= −
(

(KDb0 +KPa0)h(t) + (KDb1 +KPa1)
dh

dt
(t)

)
.
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In the examples that follow, n = 1, so the equation is

a1v̇(t) + a0v(t)

= −
(

(KDb0 +KPa0)h(t) + (KDb1 +KPa1)
dh

dt
(t)

)
.

Computationally, the infrastructure of Equation (6.5) has to be expanded to ac-

commodate v(t) as the solution of a differential equation of order n. In the context of a

numerical solver, this can be accomplished by adding n first-order equations alongside

those defining the derivatives of x1, . . . , x4. The new states represent v, . . . , v(n−1),

and all n+ 4 equations can be solved simultaneously.

6.4 Error and Torque Results

Varying the controller order causes dynamical changes. This section presents the

different types of beneficial results that are achievable by extending conventional PD

to fractional-order control.

The first objective is to reduce error by changing the controller order q. In this

scenario, the walker takes ten steps after a velocity disturbance. The walker’s states

before the disturbance are

x =

[
−0.25 −0.15 2.1 0.46

]
,

with the first two measured in rad and the others in rad/s. The disturbance raises

x4, the time derivative of x2 = θ2, from 0.46 to 4.2 rad/s. Negative values of x1 = θ1

and x2 = θ2 mean that the walker has not yet crossed vertical and is thus early in

its step; a greater x4 pushes it forward unexpectedly fast. Controllers vary in order

from 0.9 to 1, where 1 represents conventional PD. The error as a function of time,

calculated by Equation (6.3), is plotted for selected values of q in Figure 6.4.
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Figure 6.5. Performance results for different control orders.

Performance is measured by integrating the absolute value of the error h(t) over

the time taken for the PD-controlled walker to take ten steps. Order 0.93 performs

best, as shown in Figure 6.5. The improvement is 24% less error compared to the

case of PD control.

Order flexibility can also reduce the energy input required to execute the control

strategy. The second objective is to recover similar performance to the PD controller,

but with reduced gains. An example result that fulfills this objective is shown in

Figure 6.6. With order 0.93, 32% less proportional gain, and 16% less derivative

gain, the walker has the same integrated error (within a few percent) as it does with

the original PD controller.
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Figure 6.6. Evidence of fractional-order control with lower gains yielding
the original level of performance.

165



0 0.2 0.4 0.6 0.8 1

Time, t [s]

-40

-20

0

20

40

60

80

100

T
or

qu
e,

 u
(t

) 
[N

 *
 m

]

q = 1 (PD), K
P
 = 625, K

D
 = 125

q = 0.93, K
P
 = 625, K

D
 = 125

q = 0.93, K
P
 = 425, K

D
 = 105

Figure 6.7. Evidence of fractional-order control with lower gains yielding
reduced torque at the hip joint.

In the fractional-order controllers of Figure 6.6, the derivative gain is multiplying

the time derivative of h(t) having order 0.93 rather than order 1, and the function

h(t) itself evolves differently in each case. Therefore, that result does not conclusively

demonstrate a reduced energy cost. To demonstrate those savings, the torque at the

hip joint is examined; indeed the walker experiences less torque under fractional-

order control. The controllers of order 0.93 bring about reduced torque magnitude,

that is, smaller peaks, as shown in Figure 6.7. By inspection, the integral of the

absolute value of torque with the reduced-gain controller is lower than that with the

PD controller.

This chapter has taken the idea that fractional order can be varied in control and

applied it to the setting of two-legged dynamic walking. The resulting improvements
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are seen here in simulation; the walker can better follow a trajectory indicative of

stability or replicate its previously established performance level with less applied

torque.

Many lines of inquiry along which this research effort can continue are appar-

ent. Broader searches and optimizations of several parameters would be informative.

To this point, the problem has shown itself to be more numerically challenging for

derivative orders outside the interval [0.9, 1]. Among control variables, the Padé ap-

proximant order stands out as a possible means to expand the solution space; however,

increasing n has not been sufficient in isolation. Altering the gains is likely required

to control the robot effectively with a wider range of controller orders. Incidentally,

for test cases chosen among the successful examples presented here, increasing n adds

computational complexity and does not change the resulting control signal.

The point s about which the Padé approximant is computed also influences the

result. Considering that this control strategy uses s as an operator, it is not intuitive

to associate s with a numerical value, and yet the expansion cannot be computed

without doing so. Varying the expansion point and determining the mathematical

ramifications of such a step would both be beneficial efforts.

The choices of controller order and gains in this chapter are experimental. Op-

timizing those would fall, respectively, within the categories of system identification

and optimal control. While those pursuits are beyond the scope of this chapter, they

would have the potential to expedite decisions about how to improve efficiency by

expanding PD control to include fractional order.

Furthermore, the results of this research represent one example situation, not an

exhaustive study. Making these results more comprehensive would involve varying

the walker’s initial leg angles and angular velocities. The parameters related to the

disturbance can be varied as well, for purposes such as quantifying robustness.

Fractional-order control always has the potential to outperform PD and, in the
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worst case, performs equally well when derivative order q = 1. This research has

explored and demonstrated the potential of this added dimension of control design

for a simulated two-legged dynamic walker. In separate trials, the robot’s ability

to follow a desired trajectory and its energy consumption are shown to improve.

Therefore, fractional-order control is a possible pathway by which to develop more

efficient walking robots.
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CHAPTER 7

CONCLUSIONS AND SUGGESTED FUTURE ENDEAVORS

In complex systems cast as networks of mechanical components, order changes

as a result of damage are evident. In Chapter 3, it is demonstrated that damage

to a component causes a shift in frequency response that corresponds to an order

change. Chapter 4 affirms these order changes by way of a computational system

identification procedure. It is desired to incorporate fractional order measurement

into a framework that transcends the context of the robot formation examples. To

that end, the procedure of Chapter 4 can serve as a bridge from the observation

of order changes within that context to monitoring of high-order systems in general.

Chapter 5 expands the potential scope of application from systems containing springs

and dampers to those having arbitrary linear connections. The link between dynam-

ical changes and fractional-order models is promising for control of complex systems;

Chapter 6 shows that fractional-order control can lead to marked improvement over

integer-order control even in a setting not suggestive of fractional-order dynamics.

The main contributions of this dissertation are illustrations of principles under-

lying the proposed monitoring technique — tracking fractional order — and results

asserting its value as an engineering tool. Some findings from the mechanically be-

having robot formation systems presented in Chapters 3 and 4 that reveal the value

of fractional order in system monitoring are:

• The order shifts resulting from damage among the interactions within these
systems are linked with shifting frequency response characteristics that follow
clear trends observable from data.
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• Offsetting changes in mechanical properties of these systems’ components, de-
spite allowing roughly the same amount (magnitude) of force to be transmitted,
can be diagnosed because they result in distinct fractional-order models.

• Damage to different components within these systems can be distinguished, and
resulting dynamical effects quantified, merely by measuring the overall system’s
input-output relationship; exhaustive sensing is not necessary.

Findings such as these have the potential to shed new light on the practice of system

monitoring. A comprehensive method built around fractional-order models would

provide an efficient transition from data collection to damage detection and updating

of models and control strategies. Inferences from these models could make the task

of keeping a system operational after damage more viable.

This chapter proposes the remainder of the path leading to this comprehensive

monitoring. The insights that have been presented so far can be buttressed mathe-

matically; Chapter 5 is meant to light the way for those inquiries. They can be tested

in environments that will assess practical applicability; Chapter 6, though limited to

simulation, is meant to demonstrate the potential of fractional order in all modeling

and control settings. Furthermore, they can be extended in the direction of an inverse

problem of sorts: how to design a system with dynamics of a certain order that, in

effect, is intentionally suitable for monitoring by fractional order. These discussions

are followed by concluding remarks about the contributions of this dissertation.

7.1 Supporting Mathematical Framework

This branch of future work seeks further consolidation of the results presented so

far with the theory of fractional calculus and differential equations. It is hypothe-

sized that an explicit relationship can be found between the governing equation of

a damaged system and that for an undamaged one, assuming that the damage is

known in terms of the equation parameters. This extended mathematical analysis

would strengthen the findings that suggest the presence of such a relationship.
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In the coverage formation example, the duality between the damage results is

compelling; the order change resulting from damage to the first spring is equal and

opposite to that resulting from damage to the first damper. This occurs in spite of the

fact that the operational constants for the stiffness and damping are different. The

research effort proposed here would pursue the mathematical framework connecting

damage to effects on a system’s order and, in turn, its governing equation. The most

obvious line of inquiry along which to proceed initially is perturbation analysis.

7.1.1 Perturbation Analysis

The fractional-order transfer function that is established as an accurate descrip-

tion for the undamaged coverage formation system comes from analysis of an infinite

version of the system. It is plausible that further information about the causes of

order changes may be found by probing the infinite system further.

If the new spring constant kd is defined to be any deviation from expectation,

kd = k + ε, then the formulation of the transfer function for the infinite tree system

is affected in the following way:

G∞,damaged(s) =
1

1
1

k + ε
+

1√
kbs

+
1

1

bs
+

1√
kbs

.

As explained in [38], the full self-similarity is lost. This inhibits one’s ability to per-

form algebraic manipulations that might lead to a closed-form solution for G∞,damaged,

apart from condensing the fraction into

Gdamaged(s) =
(k + ε)

√
bks+ bs

(√
bks+ 2k + ε

)
bs
(
k
(

2
√
bks+ bs+ ε

)
+ 2ε
√
bks+ k2

) , (7.1)

which raises no apparent interpretation of its own accord.
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Perturbation analysis appears to be the most direct path by which the mathe-

matical effects of damage to a high-order system may be discovered. Introducing a

variable such as ε permits propagation of the damage throughout manipulation of

any equation related to the system. In light of this mathematical advantage and the

computational verification that damage can be detected in the infinite version of the

example system, further insights can be pursued from perturbation.

7.1.2 Continued Fractions

At first glance, there is no order shift apparent in Equation (7.1). It is desired to

reach a level of mathematical clarity that would lead to the analytical emergence of

a transfer function of an order other than 1/2, or the expected order in general, after

the introduction of damage to the model. In this regard, an avenue that presents a

possible alternative to perturbation analysis is the study of continued fractions.

To be specific, one may express a transfer function of some noninteger power of

s (or, in the robot formation example context, kbs) as a continued fraction. Two

examples of these are

(kbs)1/2 = 1 +
kbs− 1

2 +
kbs− 1

2 +
3(kbs− 1)

6 +
3(kbs− 1)

2 +
. . .
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and

(kbs)2/3 = 1 +
2(kbs− 1)

3 +
kbs− 1

2 +
5(kbs− 1)

9 +
4(kbs− 1)

2 +
. . .

.

These particular continued fractions condense into ratios of polynomials where the

numerator and denominator have the same order. This is problematic in a systems

framework because, as transfer functions, they are improper; causality is lost, even

keeping in mind that the specific link to the example system lies with the reciprocals

of these fractions representing positive powers of kbs. However, these continued

fraction representations are not unique. Future research could pursue alternative

ways to obtain transfer functions for systems that contain fractional dynamics yet

can be constructed from integer-order mechanical modeling components.

7.2 Robustness and Practical Examples

The shortest path of development from the principles presented in this work to

their application in the physical world is likely to be their incorporation into system

identification and structural health monitoring. The goal of applicability in the for-

mer suggests a need for assurance that the procedure is robust. For the latter, it

should be shown that the method continues to reveal conclusive information across

a variety of systems and damage cases.

7.2.1 Identification Refinement

Currently, with regard to the identification procedure that has been put forth,

some sensitivity is present. Adjusting the boundaries of the frequency window chosen

for the identification can have an effect on the dominance of the expected order in
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the result. These effects, for the example systems of this dissertation, have not been

sufficient to obscure the dominant order altogether; however, making a suboptimal

choice of frequency boundaries can raise the question of whether there are actually

several orders with noticeable impact on the response.

It is not always possible to know the best frequency window for sampling, so au-

tomating this decision is desirable. In light of the ease of computation of the transfer

functions, an additional optimization loop that would iteratively select frequency

boundaries and run the system identification procedure anew may be beneficial. In

theory, this would extract the strongest possible result from the frequency response

information, thus ensuring knowledge of the dynamical order of greatest importance.

However, considering the broad space of mechanical models, it is possible that

some systems pose a situation in which multiple fractional-order terms are needed

for faithful modeling. In such a case, it would be important to capture more than

one dominant order. Multiple-term models are available from the identification pro-

cedure presented here, but their utility is less clear than that of their single-term

counterparts. Perhaps there is a class of “multi-fractional-order” systems.

Systems with nonminimum phase cannot be perfectly modeled with the simplest

version of the identification procedure of Chapter 4. One potential research direction

could be to examine the effects of numerator terms on the identified transfer function

accuracy and determine what conditions merit their inclusion and how many terms

should be introduced. The order of the system becomes less clear with numerator

terms, but monitoring from frequency response would still be possible.

7.2.2 Discussion of Applications

Throughout the procedure’s evolution, it should be tested on data from multiple

types of fractional-order systems. The choices of systems to examine may be inspired

by the literature, but at least in part, this effort should incorporate physical data. A
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priority of this research has been to lay a foundation for the engineering community

to make use of these principles, so such uses should be forthcoming.

One potentially fruitful setting for this work is linear friction welding. This indus-

trial application lends itself to fractional-order modeling because the types of forces

on the oscillating part vary throughout the process. Initially, friction and elastic

forces dominate, but the steady rise in temperature brings about effects suggestive

of viscosity. The interpretation of this progression in a systems context is that the

order of the forcing shifts from 0 to 1. Modeling of this process with a fractional-order

differential equation is a pursuit motivated by the possibility of model simplification

from a time-varying governing equation to a homogeneous one if the correct fractional

order is chosen.

Solving equations relating parameters from proprietary data consisting of force

(input) and part position (output) sinusoids from ten welds has yielded dozens of

physically plausible governing equations with fractional-order terms. In other words,

the coefficients of the second-order term capturing inertia and of the fractional-order

term capturing the other forces share sign, implying stability. This is discussed in

[23]. Optimization within this space of equations to find the particular order that

best fits the process remains an open question. However, frequency-domain data

could forge a strong connection between the modeling and monitoring outlined in

this work and a segment of industry where fractional-order dynamics are suspected

but not yet verified.

An additional area where the ideas presented in this work may acquire practical

traction is structural health monitoring. Results from that field indicating fractional-

order dynamics could enhance the transparency of the relevance of these contribu-

tions. Furthermore, the existing emphasis on frequency response in structural health

monitoring suggests that the field may be in position to benefit from the incorporation

of measurement of fractional order.
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The foregoing discussion is not assumed to be complete. From a higher-level

perspective, other experimental settings in industry ripe for innovation in light of

this work certainly exist. The breadth of applications that stand to benefit from

novel insights extracted from calculus, a veritable pillar of engineering, is vast.

7.3 Modeling and Design Implications

Exhaustively testing models of real and imagined mechanical systems through the

lens of fractional order measurement is beyond the scope of finite time. Instead, the

benefit of system monitoring by fractional order to modelers and control designers

primarily lies in the transparency of the shifts in frequency response that are caused

by damage. It is desired to extract information about how to construct mechanical

models so that the systems respond at some arbitrary order, implying compatibility

with the monitoring proposed in this work.

Preliminary examinations into constructions of tree network systems other than

those in this dissertation have been made. For instance, one may alternate component

patterns from one layer to the next, with the first layer having one spring and one

damper but the second having all (four) components as springs, and so on. The

transfer function of an infinite version of this system would be

G∞(s) =
1

1

Gk(s) +
1

1

Gk(s) +G∞(s)
+

1

Gk(s) +G∞(s)

+
1

Gb(s) +
1
2

Gk(s) +G∞(s)

;

this is self-similar, as in the robot formation example.

A closed-form expression for G∞(s) can be found algebraically. For completeness,

it is given by

G∞(s) =
1

3

(
−2Gk(s)−Gb(s)±

√
13(Gk(s))2 + 22Gk(s)Gb(s) + (Gb(s))2

)
,
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from which no affirmative conclusion about fractional order can be drawn. Future

work, however, could explore reverse-engineering this algebra, turning a transfer func-

tion of some desired order into a corresponding combination of individual components.

7.4 Concluding Remarks

This dissertation has established new principles for monitoring of high-order me-

chanical systems. Fractional order is a transparent lens through which to view dy-

namical changes experienced by such a system. The benefits of this type of monitoring

that specifically depend on the mathematics of fractional calculus are twofold. First,

detection of a problem in the domain of frequency response leads immediately to the

determination of a governing equation for the system as it is currently operating.

This means that if it is desired to continue using the system after damage or some

other modification, the new governing equation can be employed in testing the new

system on various types of inputs in simulation.

In turn, the second benefit is that these simulations can be computationally effi-

cient because of the model simplification from high order to fractional order. From

the outset, this has been the primary motivation for seeking to extract insights from

fractional calculus. The flexibility afforded to the modeler by the choice of dynamical

order among all real numbers allows for the generation of system models with vir-

tually any set of response characteristics, without having to include an expensively

large number of terms in the governing equation.

In the evolution of a system, modeling is followed by control and design. Indeed,

the advances in modeling presented in this dissertation affect the other two areas

as well. Reductions in simulation time can easily propagate into development of a

control strategy, but the variety of options for this control strategy itself may be

expanded to include fractional-order methods as well. The inverse problem discussed

just before this section, which seeks a way to produce mechanical system models of
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arbitrary order, is specifically motivated by the area of design. If there is a benefit to

be had in a particular engineering setting by creating a fractional-order component

from some combination of others that are available, these advances can further that

pursuit.

This work extends mathematically into the concept of implicit operators as mod-

els for complex systems. The possibility of closed-form models for systems previously

reserved for numerical approaches is appealing. Additionally, this work extends prac-

tically into fractional-order control. If that concept can be beneficial in an application

not suggestive of fractional-order dynamics whatsoever, such as two-legged walking,

its promise is certainly no less evident for control of fractional-order systems. As that

class of systems grows, so too does the potential of fractional order as an influential

parameter in modeling and control.

Perhaps optimistically, there will be benefits of unknown nature that follow from

this work as well. This is likely to be the case because of the intellectual proximity

of the advances presented here to the building blocks of calculus. A complete list of

all applications of calculus that have helped civilization would exceed the limits of

the human mind. This work is presented with the intention of expanding that list.
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